Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(7\cdot2^{13}< 8\cdot2^{13}=2^{16}\)
d: \(3^{99}=\left(3^{33}\right)^3\)
\(11^{21}=\left(11^7\right)^3\)
mà \(3^{33}>11^7\)
nên \(3^{99}>11^{21}\)
Bài 1:
\(\frac{35(27^8+2.9^{11})}{15(81^6-12.3^{19})}=\frac{5.7(3^{24}+2.3^{22})}{3.5(3^{24}-2^2.3^{20})}\\
=\frac{5.7.3^{22}(3^2+2)}{3.5.3^{20}(3^4-2^2)}\\
=\frac{5.7.3^{22}.7}{3.5.3^{20}.7.11}\\
=\frac{7.3}{11}=\frac{21}{11}\)
Bài 2:
a. $(2x+1)(y-5)=10$
Với $x,y$ tự nhiên thì $2x+1$ là số tự nhiên lẻ và $y-5$ là số nguyên.
Mà tích của chúng bằng $10$ nên ta xét các TH sau:
TH1: $2x+1=1, y-5=10\Rightarrow x=0; y=15$
TH2: $2x+1=5, y-5=2\Rightarrow x=2; y=7$
b.
$x(y+2)-y=5$
$x(y+2)-(y+2)=3$
$(x-1)(y+2)=3$
Với $x,y$ tự nhiên thì $y+2$ là số tự nhiên, $x-1$ là số nguyên. Mà tích của chúng bằng $3$ nên ta xét các TH sau:
TH1:
$y+2=1, x-1=3\Rightarrow y=-1, x=4$ (loại vì $y=-1$ không là stn)
TH2:
$y+2=3, x-1=1\Rightarrow y=1, x=2$
a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)
\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)
Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
c, Câu hỏi của truong nguyen kim
b) \(3^{99}=\left(3^3\right)^{33}=27^{33}\&11^{21};27^{33}>11^{21}\) nên 399 > 1121
\(2^x=2^{3^2}=2^9;x=9\)
\(8^5=2^{15}\&3^{47};3^{47}>2^{15}\) nên 85 < 347