Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)(Dùng cộng rồi trừ chính số đó bằng 0)
=\(\frac{1}{2}-\frac{1}{20}\)
=\(\frac{10}{20}-\frac{1}{20}\)( Dùng phương pháp quy đồng)
=\(\frac{9}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
=1/2[1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + 1/3*4 - 1/4*5 + ... + 1/18*19 - 1/19*20]
=1/2[1/2 - 1/19*20]
=1/2*189/380
=189/760
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{18}\right)\times\left(1-\frac{1}{19}\right)\times\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{17}{18}\times\frac{18}{19}\times\frac{19}{20}\)
\(=\frac{1\times2\times3\times...\times17\times18\times19}{2\times3\times4\times...\times18\times19\times20}\)
\(=\frac{1}{20}\)
Ta có :
\(A=\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{760}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{1}{2}\left(\frac{189}{380}\right)=\frac{189}{760}< \frac{1}{4}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}=\frac{1.2.3...19}{2.3.4...20}=\frac{1}{20}\)
a) Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2A=\left(\frac{1}{2}\times2\right)+\left(\frac{1}{4}\times2\right)+\left(\frac{1}{8}\times2\right)+\left(\frac{1}{16}\times2\right)+\left(\frac{1}{32}\times2\right)\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
Ta lấy : \(2A-1A=1A\)
\(A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)
\(A=1-\frac{1}{32}\)
\(A=\frac{31}{32}\)
Vậy \(A=\frac{31}{32}\)
b) Đặt \(B=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{18\times19}+\frac{2}{19\times20}\)
\(B=2\times(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20})\)
\(B=2\times\left(1-\frac{1}{20}\right)\)
\(B=2\times\frac{19}{20}\)
\(B=\frac{19}{10}\)
Vậy \(B=\frac{19}{10}\)
Học tốt # ^-<
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}...\frac{19}{20}=\frac{1.2...19}{2.3...20}=\frac{1}{20}\)