Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=\sqrt[3]{\sqrt{x+8}.\left[x^3\left(x+8\right)+12x\right]+6x^2\left(x+8\right)+8}\)
Đặt: \(\sqrt{x+8}=a>0\) => \(x+8=a^2\)
Khi đó ta có:
\(P\left(x\right)=\sqrt[3]{a\left(x^3a^2+12x\right)+6x^2a^2+8}\)
\(=\sqrt[3]{x^3a^3+12xa+6x^2a^2+2}\)
\(=\sqrt[3]{\left(ax+2\right)^3}\)
\(=ax+2\)
\(=x\sqrt{x+8}+2\)
a)<
b)>
c)<
Tìm x
a)X x 6 =3048:2
X =3048:2:6
X =254
B)56 :X =1326-1318
56 :X =8
X =56:8
X =7
\(ĐKXĐ:x\ne5,8\)
\(\frac{6}{x-5}+\frac{x+2}{x-8}=\frac{18}{\left(x-5\right)\left(8-x\right)}-1\)
\(\Rightarrow\frac{6}{x-5}+\frac{x+2}{x-8}=-\frac{18}{\left(x-5\right)\left(x-8\right)}-1\)
\(\Rightarrow6\left(x-8\right)+\left(x+2\right)\left(x-5\right)=-18-\left(x-5\right)\left(x-8\right)\)
\(\Rightarrow x^2+3x-58=-x^2+13x-58\)
\(\Rightarrow2x^2-10x=0\)
\(\Rightarrow2x\left(x-5\right)=0\)
\(\Rightarrow x\in\left\{0,5\right\}\)
\(\sqrt{1+x}+\sqrt{8-x}=\sqrt{\left(1+x\right).\left(8-x\right)}+3\) ĐK : \(\left\{{}\begin{matrix}x\ge-1\\x\le8\end{matrix}\right.\)
Đặt \(\sqrt{1+x}+\sqrt{8-x}=t\) (ĐK : \(t>0\))
\(\Leftrightarrow t^2=\left(\sqrt{1+x}+\sqrt{8-x}\right)^2\)
\(\Leftrightarrow t^2=1+x+8-x+2.\sqrt{\left(1+x\right).\left(8-x\right)}\)
\(\Leftrightarrow t^2=9+2.\sqrt{\left(1+x\right).\left(8-x\right)}\)
\(\Rightarrow\sqrt{\left(1+x\right).\left(8-x\right)}=\dfrac{t^2-9}{2}\)
Pt trở thành : \(t=\dfrac{t^2-9}{2}+3\Leftrightarrow2t=t^2-9+6\)
\(\Leftrightarrow t^2-2t-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(l\right)\end{matrix}\right.\)
Với t = 3 ; ta được :
\(\sqrt{1+x}+\sqrt{8-x}=3\)
\(\Leftrightarrow\left(\sqrt{1+x}+\sqrt{8-x}\right)^2=9\)
\(\Leftrightarrow1+x+8-x+2.\sqrt{\left(1+x\right).\left(8-x\right)}=9\)
\(\Leftrightarrow2.\sqrt{\left(1+x\right).\left(8-x\right)}=0\)
\(\Leftrightarrow\sqrt{\left(1+x\right).\left(8-x\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)
cho cac so x,y thoa man:x^4+x^2y^2+y^4-4=0
x^8+x^4y^4+y^8=8
A=x^12+x^2y^2+y^12 co gia tri la bao nhieu
X^8+x^4y^4+y^8=8
hay (x^4+y^4)^2-x^4y^4=8
hay (x^4+y^4+x^2y^2)(x^4+y^4-x^2y^2)=8
mà x^4+x^2y^2+y^4-4=0 nên x^4+y^3-x^2y^2=2
biết tổng hiệu tìm được x,y thôi/
a, Ta có: \(2\left(x^8+y^8\right)\ge\left(x^3+y^3\right)\left(x^5+y^5\right)\)
\(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)
Ta CM: \(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)
Áp dụng bđt Cô si:
\(x^8+x^8+x^8+x^8+x^8+y^8+y^8+y^8\ge8x^5y^3\) (*)
Tương tự, \(5y^3+3x^3\ge8x^3y^5\) (**)
Từ (*), (**) \(\Rightarrowđpcm\)