K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Ta có: \(\overrightarrow {{u_1}}  = \left( {1;1} \right),\overrightarrow {{u_2}}  = \left( {2;2} \right)\). Ta thấy, \(\overrightarrow {{u_2}}  = 2\overrightarrow {{u_1}} \).

Chọn điểm \(A\left( {1; - 2} \right) \in {\Delta _1}\). Thay tọa độ điểm A vào phương trình đường thẳng \({\Delta _2}\) ta được \({t_2} = \frac{1}{2} \Rightarrow A\left( {1; - 2} \right) \in {\Delta _2}\).

Vậy 2 đường thẳng \({\Delta _1}\) và \({\Delta _2}\) song song với nhau.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Ta có: \(\overrightarrow {{u_1}}  = \left( {1; - 2} \right) \Rightarrow \overrightarrow {{n_1}}  = \left( {2;1} \right)\) và \(\overrightarrow {{u_2}}  = \left( {1;3} \right) \Rightarrow \overrightarrow {{n_2}}  = \left( {3; - 1} \right)\).

Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {2.3 + 1.( - 1)} \right|}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{3^2} + {{( - 1)}^2}} }} = \frac{{\sqrt 2 }}{2} \\ \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)

QT
Quoc Tran Anh Le
Giáo viên
30 tháng 9 2023

a) - Ta có: \(\overrightarrow {{u_1}}  = \left( {3\sqrt 3 ;3} \right);\overrightarrow {{u_2}}  = \left( {1 ;0} \right) \Rightarrow \cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {3\sqrt 3 .1 + 3.0} \right|}}{{\sqrt {{{\left( {3\sqrt 3 } \right)}^2} + {3^2}} .\sqrt {{1^2} + {0^2}} }} = \frac{{\sqrt 3 }}{2}.\)

- Vậy \(\left( {{\Delta _1},{\Delta _2}} \right) = {30^o}\)

b) – Ta có\(\overrightarrow {{n_1}}  = \left( {2; - 1} \right);\overrightarrow {{n_2}}  = \left( { - 1  ;3} \right) \Rightarrow \cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {2.\left( { - 1} \right) + \left( { - 1} \right).3} \right|}}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{{\left( 1 \right)}^2} + {3^2}} }} = \frac{{\sqrt 2 }}{2}.\)

- Vậy \(\left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có: \(\overrightarrow {{n_1}}  = \left( {\sqrt 3 ;1} \right),\overrightarrow {{n_2}}  = \left( {1;\sqrt 3 } \right)\)

Suy ra: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\sqrt 3 .1 + 1.\sqrt 3 } \right|}}{{\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} .\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }} = \frac{{\sqrt 3 }}{2} \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {30^o}\)

b) Ta có: \(\overrightarrow {{u_1}}  = \left( {2;4} \right),\overrightarrow {{u_2}}  = \left( {1; - 3} \right)\)

Suy ra: \(\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {2.1 + 4.\left( { - 3} \right)} \right|}}{{\sqrt {{2^2} + {4^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đường thẳng \({\Delta _1}\)có một vectơ chỉ phương là \({\overrightarrow u _{{\Delta _1}}} = \left( {2;5} \right)\)

Do đó \({\overrightarrow n _{{\Delta _1}}} = \left( { - 5;2} \right)\), đồng thời \({\Delta _1}\) đi qua điểm \(M\left( {1;3} \right)\) nên  phương trình tổng quát của \({\Delta _1}\) là: \(-5\left( {x - 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow 5x - 2y + 1 = 0\).

b) Đường thẳng \({\Delta _2}\)có một vectơ pháp tuyến là \({\overrightarrow n _{{\Delta _2}}} = \left( {2;3} \right)\)

Do đó \({\overrightarrow u _{{\Delta _1}}} = \left( { - 3;2} \right)\), đồng thời \({\Delta _2}\) đi qua điểm \(N\left( {1;1} \right)\) nên  phương trình tham số của \({\Delta _2}\) là: \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + 2t\end{array} \right.\).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Điểm \(M\left( {1;2} \right)\) thuộc cả hai đường thẳng nói trên.

b) Ta có: \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 2y =  - 3\\3x - y = 1\end{array} \right.\).

Sử dụng máy tính cầm tay, ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)

c) Tọa độ giao điểm của \({\Delta _1},{\Delta _2}\) chính là nghiệm của hệ phương trình\(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 1} \right),\overrightarrow {{n_2}}  = \left( {1;1} \right)\)

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.1 + ( - 1).1 = 0\) nên \(\overrightarrow {{n_1}}  \bot \overrightarrow {{n_2}} \)

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - 3; - 1} \right)\)

 b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {5; - 2} \right),\overrightarrow {{n_2}}  = \left( {5; - 2} \right)\)

\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;3)\) thuộc \({d_1}\), thay tọa độ của vào phương trình \({d_2}\), ta được \(5.1 - 2.3 + 9 = 8 \ne 0\), suy ra không thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song

c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3;1} \right),\overrightarrow {{n_2}}  = \left( {3;1} \right)\)

Suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(2;5)\) thuộc \({d_1}\), thay tọa độ của vào phương trình \({d_2}\), ta được \(3.2 + 5 - 11 = 0\), suy ra thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) trùng nhau

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Khoảng cách từ điểm A đến \({\Delta _1}\) là: \(d\left( {A,{\Delta _1}} \right) = \frac{{\left| {3.1 - 1.\left( { - 2} \right) + 4} \right|}}{{\sqrt {{3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{9}{{\sqrt {10} }}\)

b) Phương trình tổng quát của đường thẳng \({\Delta _2}\)là: \(2x + y + 3 = 0\)

Khoảng cách từ điểm B đến \({\Delta _2}\) là: \(d\left( {A,{\Delta _2}} \right) = \frac{{\left| {2.\left( { - 3} \right) + 1.2 + 3} \right|}}{{\sqrt {{2^2} + {1^2}} }} = \frac{1}{{\sqrt 5 }}\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Chọn \(t = 0;t = 1\) ta lần được được 2 điểm A và B thuộc đường thẳng \(\Delta \) là: \(A\left( {1; - 2} \right),B\left( { - 1; - 1} \right)\)

b) +) Thay tọa độ điểm C vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\ - 1 =  - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên C không thuộc đường thẳng \(\Delta \)

+) Thay tọa độ điểm D vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\3 =  - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên D không thuộc đường thẳng \(\Delta \)