Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có\(\left(-\frac{1}{3}xy\right)\left(3x^2yz^2\right)\)= \(-x^3y^2z^2\)có hệ số là -1
b/ Ta có \(-54y^2.bx\)= \(-54bxy^2\)có hệ số là -54b (với b là hằng số)
c/ Ta có \(\left(-2x^2y\right)\left(-\frac{1}{2}\right)^2x\left(y^2z\right)^3\)= \(x^3y\left(y^2z\right)^3\)= \(\left(x^3y\right)\left(y^6z^3\right)\)= \(x^3y^7z^3\)có hệ số là 1.
A và D là đa thức
+) Đa thức là tổng các đơn thức
+) Đơn thức là biểu thức chỉ gồm một số hoặc một biến hoặc một tích giữa các số và các biến
B không phải vì a/x không là đơn thức
E không là đa thức vì: a/z không là đơn thức
\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M nguyên => \(\frac{3}{x^2-2}\)nguyên
=> \(3⋮x^2-2\)
=> \(x^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x2 - 2 | 1 | -1 | 3 | -3 |
x2 | 3 | 1 | 5 | -1 |
x | \(\pm\sqrt{3}\) | \(\pm1\) | \(\pm\sqrt{5}\) | Vô nghiệm |
Vì x thuộc Z => x = \(\pm1\)
Bài làm:
\(M=\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M là số nguyên => \(\frac{3}{x^2-2}\inℤ\Rightarrow x^2-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\Rightarrow x\in\left\{-1;1\right\}\)
Vậy x = 1 hoặc x = -1 thì M nguyên
a)
B=\(4x^2y^2z\left(-3x^2z\right)\)
B=\(\left[4\left(-3\right)\right]\left(x^2x^2\right)y^2\left(zz\right)\)
B=\(-12x^4y^2z^2\)
=> \(\left\{{}\begin{matrix}Heso:-12\\Phanbien:x^4\\Bac:8\end{matrix}\right.y^2z^2\)
b)
Thay x=-2, y=-1, z=1 vào biểu thức B có:
B= \(-12\left(-2\right)^4\left(-1\right)^2\left(1\right)^2\)
B= \(-12.16.1.1\)
B= -192
Trong các biểu thức sau, biểu thức nào là đơn thức ?
A. (x+y2 )z B. x/2-z C. – 5x + 1 D. (- 2xy2)1/3xy2
D