K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

x-2* căn(x-2)+3.tìm gtnn.

Ta có: \(\left|x-2\right|\ge x-2\)

          \(\left|x-3\right|\ge0\)

          \(\left|x-4\right|=\left|4-x\right|\ge4-x\)

\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2\ge0\\x-3=0\\x-4\le0\end{cases}\Rightarrow}x=3\)

24 tháng 1 2016

Bài 1 : 

A đạt GTLN khi \(\frac{5}{4-x}\)đạt GTLN 

* Nếu 4 -x > 0 => \(\frac{5}{4-x}\)> 0            (1)

* Nếu 4 -x < 0 => \(\frac{5}{4-x}\)< 0            (2)

 

Từ (1) và (2) =>  \(\frac{5}{4-x}\)đạt GTLN khi 4 - x > 0 (a)

- Phân số  \(\frac{5}{4-x}\)> 0 có tử là 5 : không đổi nên  \(\frac{5}{4-x}\)đạt GTLN khi 4 - x đạt GTNN (b)

- Mà x thuộc Z => 4 - x thuộc Z (c)

- Từ (a), (b), và (c) => 4 - x = 1 => x = 3

Vậy x = 3 thì A có GTLN là \(\frac{5}{4-3}\)= 5

 

 

 

21 tháng 3 2019

a) 2.(x+1) = 3.(4x-1)

=> 2x + 2 = 12x - 3

=> 2x - 12x = -3 - 2

=> -10x = - 5

=> x = 1/2

Thay x = 1/2 vào P

\(P=\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}.\)

...

21 tháng 3 2019

b) \(A=\frac{4-x}{x-2}=\frac{6-\left(x-2\right)}{x-2}=\frac{6}{x-2}-1\)

Để A nhỏ nhất

=> 6/(x-2) có giá trị nhỏ nhất

nếu x là số nguyên

=> 6/(x-2) có giá trị nhỏ nhất là: 6/(x-2) = - 6 tại x = 1

Min A = -7 tại x = 1

nếu x không phải là số nguyên

...

mk ko tìm đc GTNN của A

4 tháng 1 2019

Ta có:\(\frac{x-14}{4-x}=\frac{x-4-10}{4-x}=\frac{x-4}{4-x}-\frac{10}{4-x}=-1-\frac{10}{4-x}\)

Để M có GTNN thì \(-1-\frac{10}{4-x}\)phải có GTNN=>\(\frac{10}{4-x}\)phải có GTLN

=>4-x phải có GTNN =>x phải có GTLN

vì x\(\varepsilonℤ\),x khác 4=> x<4 hoặc x>4

+ Nếu x<4=>4-x>0,10>0=>\(\frac{10}{4-x}\)>0

+Nếu x>4=>4-x<0,10>0=>\(\frac{10}{4-x}\)<0

=> x<4 và x có GTLN, x\(\varepsilonℤ\)=> x=3

Từ đấy bạn thay vào M tìm GTNN

14 tháng 2 2020

gtnn=-11;x=3

1 tháng 8 2019

Ta có |x+4| + |7-x| \(\ge\)|x + 4 + 7 -x| \(\forall\)x

          |x+4| + |7-x| \(\ge\)|11| \(\forall\)x

          |x+4| + |7-x| \(\ge\)11 \(\forall\)x

Hay A\(\ge\)11 \(\forall\)x

Và A = 11 <=> (x+4)(7-x) \(\ge\)0

<=> \(\hept{\begin{cases}x+4\text{​​}\ge0\\7-x\ge0\end{cases}}\)or  \(\hept{\begin{cases}x+4\le0\\7-x\le0\end{cases}}\)

<=> \(\hept{\begin{cases}x\ge-4\\x\le7\end{cases}}\)or  \(\hept{\begin{cases}x\le-4\\x\ge7\end{cases}}\)

<=> 7 \(\ge\)x\(\ge\)-4

Vậy A đạt GTNN bằng 11 tại x t/m 7\(\ge\)x\(\ge\)-4