Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^x.4=128\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
vậy \(x=5\)
b) \(x^{15}=x\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
c) \(2^x.\left(2^2\right)^2=\left(2^3\right)^2\)
\(2^x.2^4=2^6\)
\(2^x=2^2\)
\(\Rightarrow x=2\)
vậy \(x=2\)
d) \(\left(x^5\right)^{10}=x\)
\(x^{50}=x\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
a, 2x.4 = 128
2x = 128 : 4
2x = 32
2x = 25
=> x = 5
b, x15 = x
=>x15 - x = 0
=> x14.x - x = 0
=> x(x14 - 1) = 0
=> x = 0 hoặc x14 - 1 =0
=> x = 0 hoặc x14 = 1
=> x = 0 hoặc x = 1 hoặc x = -1
Mà x \(\in\)N
=> x = 0 hoặc x = 1
c, 2x.(22)2 = (23)2
2x.24 = 26
2x = 26 : 24
2x = 22
=> x = 2
d, (x5)10 = x
=> x50 = x
=> x50 - x = 0
=> x49.x - x = 0
=> x(x49 - 1) = 0
=> x = 0 hoặc x49 - 1 = 0
=> x = 0 hoặc x49 = 1
=> x = 0 hoặc x = 1
\(2^x.4=128\)
\(\Rightarrow2^x=32\left(\text{cùng chia cho 4}\right)\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
a) \(2^x.4=128\)
\(2^x=128:4\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
b) \(x^{15}=x\)
\(\Rightarrow x\in\left\{0;1\right\}\)
c) \(2^x.\left(2^2\right)^2=\left(2^3\right)^2\)
\(2^x.2^4=2^6\)
\(2^x=2^6:2^4\)
\(2^x=2^2\)
\(\Rightarrow x=2\)
d) \(\left(x^5\right)^{10}=x\)
\(x^{50}=x\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Ta có :
a) 2x . 4 = 128
=> 2x . 22 = 27
=> 2x = 27 : 22 = 25
=> x = 5
a) (2^x).4=128
2^x = 128:4
2^x = 32
mà 32=2^5=>x=5
b) ta có: x^15=x
theo quy ước: 0^15=0;1^15=1
=> x=1
4 câu còn lại mai mình sẽ giải nhé
a) x15= x.
=> x15- x= 0.
=> x( x14- 1)= 0.
=> \(\orbr{\begin{cases}x=0.\\x^{14}-1=0.\end{cases}}\)
=> \(\orbr{\begin{cases}x=0.\\x^{14}=1.\end{cases}}\)
=> \(\orbr{\begin{cases}x=0.\\x=1.\end{cases}}\)
Vậy x\(\in\) { 0; 1}
b) 16x< 128.
Nếu x= 0 thì 16x= 160= 0( chọn)
Nếu x= 1 thì 16x= 161= 16( chọn)
Nếu x= 2 thì 16x= 162= 256( loại)
Vậy x\(\in\) { 0; 1}
c) 5x. 5x+ 1. 5x+ 2\(\le\) 1000...00: 218( 18 chữ số 0)
=> 5x+ x+ 1+ x+ 2\(\le\) 1018: 218.
=> 53x+ 3\(\le\) 518.
=> 3x+ 3\(\le\) 18.
=> 3x\(\le\) 15.
=> x\(\le\) 5.
=> x\(\in\){ 0; 1; 2; 3; 4; 5}
Vậy x\(\in\){ 0; 1; 2; 3; 4; 5}
d) 2x.( 22)2=( 23)2.
=> 2x. 24= 26.
=> 2x= 26: 24.
=> 2x= 22.
=> x= 2.
Vậy x= 2.
e)( x5)10= x.
=> x50- x= 0.
=> x( x49- 1)= 0.
=> \(\orbr{\begin{cases}x=0.\\x^{49}-1=0.\end{cases}}\)
=> \(\orbr{\begin{cases}x=0.\\x^{49}=1.\end{cases}}\)
=> \(\orbr{\begin{cases}x=0.\\x=1.\end{cases}}\)
Vậy x\(\in\) { 0; 1}
\(x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x\left(x^{14}-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\Rightarrow x=\pm1\end{cases}}\)
a) 2x . 4 = 128
=> 2x = 32
=> 2x = 25
=> x = 5
b) x15 = x
=> x15 - x = 0
=> x . ( x14 - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^{14}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x\in\left\{-1;1\right\}\end{cases}}\)
c) 2x . ( 22 )2 = ( 23 )2
=> 2x . 24 = 26
=> 2x = 22
=> x = 2
d) ( x5 )10 = x
=> x50 = x
=> x50 - x = 0
=> x . ( x49 - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x^{49}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^{49}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(a,2^x\cdot4=128\)
\(2^x=128:4=32\)
\(2^x=2^5\)
\(x=5\)
\(b,x^{15}=x\)
\(x^{15}-x=0\)
\(x\left(x^{14}-1\right)=0\)
\(\left\{{}\begin{matrix}x=0\\x^{14}-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(c,16^x< 128\)
\(2^{4x}< 2^7\)
\(4x< 7\)
\(x=1\)
d,\(5^x\cdot5^{x+1}\cdot5^{x+2}< 1000000000000000000:2^{18}\)
\(5^{x+x+1+x+2}< 10^{18}:2^{18}\)
\(5^{3x+3}< 5^{18}\)
\(3x+3< 18\)
\(3\left(x+1\right)< 18\)
\(x+1< 6\)
\(x< 5\)
\(e,2^x\cdot\left(2^2\right)^2=\left(2^3\right)^2\)
\(2^x\cdot2^4=2^6\)
\(2^{x+4}=2^6\)
\(x+4=6\)
\(x=2\)
\(f,\left(x^5\right)^{10}=x\)
\(x^{50}=x\)
\(x^{50}-x=0\)
\(x\left(x^{49}-1\right)=0\)
\(\left\{{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a. 2^x.4=128
2^x=128:4=32
2^x=2^5
x=5
b. x^15=x
x=1
c. 2^x.(2^2)^2=(2^3)^2
2^x.2^4=2^6
2^(x+4)=2^6
x+4=6
x=6-4=2
d. (x^5)^10=x
x^50=x
x=1