Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : 4n + 3 = 2(2n - 1) +5
Do 2n - 1 \(⋮\)2n - 1 nên 2(2n - 1) \(⋮\)2n - 1
Để 4n + 3 \(⋮\)2n - 1 thì 5 \(⋮\)2n - 1 => 2n - 1 \(\in\)Ư(5) = {1; 5}
Lập bảng :
2n - 1 | 1 | 5 |
n | 1 | 3 |
Vậy n = {5; 3} thì 4n + 3 chia hết cho 2n - 1
c) Ta có : n + 3 = (n - 1) + 4
Để (n - 1) + 4 \(⋮\)n - 1 thì 4 \(⋮\)n - 1 => n - 1 \(\in\)Ư(4) = {1; 2; 4}
Lập bảng :
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
Vậy n = {2; 3; 5} thì n + 3 \(⋮\)n - 1
câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html
câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html
a)38-3n chia hết cho n
=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}
b)n+5 chia hết cho n+1
=>n+1+4 chia hết cho n+1
=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}
=>n thuộc{0;1;3}
c)3n+4 chia hết cho n-1
3(n-1)+7chia hết cho n-1
=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}
=> n thuộc{2;8}
d)3n+2 chia hết cho n-1
3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}
=>n thuộc{2;6}
có j ko hiểu hỏi mk
\(a,3n-5⋮n+1\)
\(< =>3.\left(n+1\right)-8⋮n+1\)
\(< =>8⋮n+1\)
\(< =>n+1\inƯ\left(8\right)\)
Nên ta có bảng sau :
n+1 | 1 | 8 | -1 | -8 | 2 | 4 | -4 | -2 |
n | 0 | 7 | -2 | -9 | 1 | 3 | -5 | -3 |
Vậy ...
Ta có 3n-5=3(n+1)-8
Để 3n-5 chia hết cho n+1 thì 3(n+1)-8 chia hết cho n+1
Vì 3(n+1) chia hết cho n+1
=> -8 chia hết cho n+1
n nguyên => n+1 nguyên
=> n+1 thuộc Ư (-8)={1;2;4;8}
Nếu n+1=1 => n=0
Nếu n+1=2 => n=1
Nếu n+1=4 => n=3
Nếu n+1=8 => n=7
Ta có: 3n+5⋮n+1.
(3n+3)+2⋮n+1.
3(n+1)+2⋮n+1.
mà 3(n+1)⋮n+1
⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.
Ta lập bảng xét giá trị
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)
TC : 3n-5 -[3.(n+1)]:hết cho n+1
3n-5 -(3n+3) :hết cho n+1
3n- 5 - 3n-3:hết cho n+1
2:hết cho n+1 =≫n+1 thuôc Ư(2)={1;2}
thay n+1lần lượt= 1;2 là ban sẽ ra
3n+24 chia hết cho n-4
<=> 3n-12+36 chia hết cho n-4
<=> 3(n-4)+36 chia hết cho n-4
<=> 36 chia hết cho n-4
\(\Rightarrow n-4\in\)Ư(36)={-1,-2,-3,-4,-6,-9,-18,-36,1,2,3,4,6,9,18,36}
n-4 | -1 | -2 | -3 | -4 | -6 | -9 | -18 | -36 | 1 | 2 | 3 | 4 | 6 | 9 | 18 | 36 |
n | 3 | 2 | 1 | 0 | -2 | -5 | -14 | -34 | 5 | 6 | 7 | 8 | 10 | 13 | 22 | 40 |
Điều kiện :\(n\in N\) | tm | tm | tm | tm | ktm | ktm | ktm | ktm | tm | tm | tm | tm | tm | tm | tm | tm |
Vậy n\(\in\){0,1,2,3,5,6,7,8,10,13,22,40}
Ta có: 3n+5 chia hết cho 3n-1
=> 3n - 1 + 6 chia hết cho 3n - 1
=> 6 chia hết cho 3n - 1 vì 3n - 1 chia hết cho 3n - 1
=> 3n - 1 \(\in\){ 1 ; 2 ; 3 ; 6 }
=> 3n \(\in\){ 2 ; 3 ; 4 ; 7 }
Mà chỉ có 3 chia hết cho 3 => n=1
3n + 5 ⋮ 3n - 1
3n - 1 + 6 ⋮ 3n - 1
Dễ thấy 3n - 1 ⋮ 3n - 1
=> 6 ⋮ 3n - 1
=> 3n - 1 thuộc Ư(6) = { 1; 2; 3; 6; -1; -2; -3; -6 }
=> n thuộc { 2/3; 1; 4/3; 7/3; 0; -1/3; -2/3; -5/3 }
Mà n thuộc N => n thuộc { 0; 1 }
Vậy n = { 0; 1 }
3n+5 chia hết cho 3n-1
suy ra :3n-1+6 chia hết cho 3n-1
mà 3n-1 chia hết cho 3n-1
=> 6 chia hết cho 3n-1
=>3n-1 thuộc ư của 6 thuộc 1;6;-1;-6
=>3n thuộc 2,7,0,-5
mà n thuộc N
nên n=0
vậy n=0