Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
a; \(\dfrac{-x}{4}\) = \(\dfrac{-2}{x}\)
-\(x.x\) = -2.4
-\(x^2\) = -8
\(x^2\) = 8
\(\left[{}\begin{matrix}x=-\sqrt{8}\\x=\sqrt{8}\end{matrix}\right.\)
Vậy \(x\in\) {-\(\sqrt{8}\); \(\sqrt{8}\)}
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
\(b,\frac{z}{7}=-\frac{11}{-28}\)
\(\Leftrightarrow z.\left(-28\right)=-11.7\)
\(\Leftrightarrow z.\left(-28\right)=-77\)
\(\Leftrightarrow z=\frac{11}{4}\)
\(a,-\frac{2}{3}=\frac{x-3}{-6}=\frac{10}{5-y}=\frac{4-2z}{9}\)
Xét :
\(-\frac{2}{3}=\frac{x-3}{-6}\)
\(\Leftrightarrow-2.\left(-6\right)=\left(x-3\right).3\)
\(\Leftrightarrow12=\left(x-3\right).3\)
\(\Leftrightarrow4=x-3\Leftrightarrow x=7\)
Xét
\(-\frac{2}{3}=\frac{10}{5-y}\)
\(\Leftrightarrow-2.\left(5-y\right)=10.3\)
\(\Leftrightarrow-10+2y=30\)
\(\Leftrightarrow2y=40\Leftrightarrow y=20\)
Xét :
\(-\frac{2}{3}=\frac{4-2z}{9}\)
\(\Leftrightarrow-2.9=\left(4-2z\right).3\)
\(\Leftrightarrow-18=\left(4-2z\right).3\)
\(\Leftrightarrow-6=4-2z\)
\(\Leftrightarrow10=2z\Leftrightarrow z=5\)
Vậy \(\left(x;y;z\right)=\left(7;20;5\right)\)