Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(\left(\sqrt{x+2}\right)^2\)> x2
<=> \(x+2>x^2\)
<=> \(-\left(x^2-x-2\right)>0\)
<=>\(x^2-x-2< 0\)
<=> \(x^2-2x+x-2< 0\)
<=> \(\left(x-2\right)\left(x+1\right)< 0\) vì 2 tích nhân với nhau nhỏ hơn 0 nên
<=> \(\orbr{\begin{cases}x-2>0\\x+1< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>2\\x< -1\end{cases}}\)
và \(\orbr{\begin{cases}x-2< 0\\x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 2\\x>-1\end{cases}}\)
ĐK x >= - 2 (1)
bpt <=> x + 2 > x^2
=> x^2 - x - 2 < 0
=> x^2 - 2x + x - 2 < 0
=> x(x-2) + ( x- 2 ) < 0
=> ( x+ 1 )(x - 2 ) < 0
=> x < 2 hoặc x > -1 (2)
Từ (1) và (2) => -2 <= x < 2
=> x thuộc Z => x = { -2 ; - 1 ; 0 ;1 }
\(\sqrt{x}>2\) (ĐKXĐ: \(x\ge0\))
\(\Leftrightarrow x>4\). Vì x là số nguyên nhỏ nhất nên x = 5 thoả mãn bất phương trình.
3/ \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+2\left(\frac{16}{ab}+ab\right)+\frac{2}{ab}\ge\)
\(\ge\frac{2.4}{\left(a+b\right)^2}+4\sqrt{\frac{16}{ab}.ab}+\frac{2.4}{\left(a+b\right)^2}\ge\frac{8}{4^2}+4\sqrt{16}+\frac{8}{4^2}=17\)
Dấu "=" xảy ra khi a = b = 2
Vậy Min P = 17 <=> a = b = 2