Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBID và ΔBIC có
BI chung
\(\widehat{DBI}=\widehat{CBI}\)
BD=BC
Do đó: ΔBID=ΔBIC
b:
Ta có: ΔBDC cân tại B
mà BI là đường phân giác
nên BI là đường cao và I là trung điểm của DC
Xét ΔEDC có
EI là đường cao
EI là đường trung tuyến
Do đo: ΔEDC cân tại E
=>ED=EC
c: BI\(\perp\)CD
AH\(\perp\)CD
Do đó: BI//AH
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Ta có: OC=OA+AC
OD=OB+BD
Mà OA=OB và AC=BD (gt)
=>OC=OD
Xét Δ OAD và Δ OBC có:
OA=OB (gt)
ˆOO^ góc chung
OC=OD (cmt)
=> Δ OAD=Δ OBC (c.g.c)
=> AD=BC (2 cạnh tương ứng)
Δ OAD=Δ OBC (cmt)
=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)
Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 1800 (kề bù)
=> ˆA2=ˆB2A2^=B2^
Δ EAC và Δ EBD có:
ˆC=ˆDC^=D^ (cmt)
AC=BD (gt)
ˆA2=ˆB2A2^=B2^ (cmt)
=> Δ EAC= ΔEBD (g.c.g)
c) Δ EAC=ΔEBD (cmt)
=> EA=EB (2 cạnh tương ứng)
ΔOBE và Δ OAE có:
OB=OA (gt)
ˆB1=ˆA1B1^=A1^ (cmt)
EA=EB (cmt)
=>Δ OBE=Δ OAE (c.g.c)
=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)
Vậy OE là phân giác ˆxO
a) Vì BA=BA ( GT )
\(\Rightarrow\Delta BAD\) cân tại B ( đn)
\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)( tính chất ) (4)
b) Vì tam giác HAD vuông tại H \(\Rightarrow\widehat{HAD}+\widehat{D1}=90^0\)( phụ nhau ) (1)
Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)( h.vẽ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)( 3)
Từ (3) và (4) \(\Rightarrow\widehat{HAD}=\widehat{CAD}\)mà AD nằm giữa 2 tia AH và AC ( c.ve)
\(\Rightarrow AD\)là phân giác của góc HAC.
c) Xét \(\Delta HAD\)và \(\Delta CAD\)có:
\(\hept{\begin{cases}\widehat{AHD}=\widehat{ACD}=90^0\\ADchung\\\widehat{HAD}=\widehat{CAD}\left(cmt\right)\end{cases}\Rightarrow\Delta HAD=\Delta CAD\left(ch-gn\right)}\)
\(\Rightarrow\hept{\begin{cases}HD=CD\left(2canhtuongung\right)\\AH=AK\left(2canhtuongung\right)\end{cases}}\)
Xét tam giác DHC có HD=CD ( cmt)
\(\Rightarrow\Delta DHC\)cân tại D
\(\Rightarrow\widehat{DHC}=\widehat{DCH}\left(tc\right)\) (5)
Ta có: \(\widehat{H1}+\widehat{DHC}=\widehat{AHD}=90^0\) (6)
\(\widehat{K1}+\widehat{DCH}=\widehat{AKD}=90^0\)(7)
Từ (5) , (6) và (7) \(\Rightarrow\widehat{H1}=\widehat{K1}\)
\(\Rightarrow\Delta AHK\)cân tại A.
d) Xét tam giác DKC vuông tại K nên \(DC>KC\)( tính chất )
\(\Rightarrow DC+AK>KC+AK\)
mà AH=AK ( cmt)
\(\Rightarrow DC+AH>KC+AK\)
\(\Rightarrow DC+AH+BD>KC+AK+BD\)
mà AB=BD ( cmt)
\(\Rightarrow AK+KC+AB< DC+BD+AH\)
\(\Rightarrow AB+AC< BC+AH\left(đpcm\right)\)
( p/s: Đánh giấu cho tôi kí hiệu góc H1 và K1 nhé chắc bạn biết mà )
a: Xét ΔBID và ΔBIC có
BD=BC
góc CBI=góc DBI
BI chung
Do đó: ΔBID=ΔBIC
b: Xét ΔBEC và ΔBED có
BE chung
góc EBC=góc EBD
BC=BD
Do đó: ΔBEC=ΔBED
=>ED=EC
c: ΔBCD cân tại B
mà BI là đường phân giác
nên BI vuông góc với CD
=>BI//AH