Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,9x^2+90x+225-\left(x-y\right)^2\)
\(=\left(3x+15\right)^2-\left(x-y\right)^2\)
\(=\left(3x+15-x+y\right)\left(3x+15+x-y\right)\)
\(=\left(2x+y+15\right)\left(4x-y+15\right)\)
x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz
=x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2
=xy(x+y+z)+zx(x+y+z)+yz(y+z)
=x(y+z)(x+y+z)+yz(y+z)
=(y+z)(x^2+xy+zx+yz)
=(x+y)(y+z)(z+x)
t i c k mk nha!!! 565464556756768768787669789789776575656767676945645645654
a, \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z\right)\)
\(=x\left(x+y+z\right)\left(y+z\right)+yz\left(y+z\right)\)
\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=\left(y+z\right)\left[x\left(x+z\right)+y\left(x+z\right)\right]\)
\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)
b, \(2x^2+2y^2-x^2z+z-y^2z-2\)
\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)
\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)
\(=\left(2-z\right)\left(x^2+y^2-1\right)\)
x2y + xy2 + x2z + xz2 + y2z + yz2 +3xyz
=(x2y+x2z)+(xy2+xz2)+(y2z+yz2)+3xyz
=x2(y+z)+x(y2+z2)+yz(y+z)+2xyz+xyz
=x2(y+z)+x(y2+z2+2yz)+yz(y+z+x)
=(y+z)x(x+y+z)+yz(y+x+z)
=(x+y+z)(xy+xz+yz)
x2y + xy2 + x2z + xz2 + y2z + yz2 + 3xyz
=(x2y + xy2 + xyz) + (x2z + xyz + xz2) + (xyz + y2z + yz2)
=xy(x + y + z) + xz(x + y + z) + yz(x + y +z)
=(x + y + z)(xy + xz + yz)
a)=x2-5x-2x+10=x(x-5)-2(x-5)=(x-5)(x-2)
b)=4x2-4x+x-1=4x(x-1)+(x-1)=(x-1)(4x+1)
c)=x2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)
a) \(70a+84b-20ab-24b^2\)
\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)
\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)
\(=\left(5a+6b\right)\left(14-4b\right)\)
\(=2\left(5a+6b\right)\left(7-2b\right)\)
b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xyz+xz^2\right)+\left(xyz+y^2z+yz^2\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)
c) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=\left(x^2y+xy^2\right)+\left(xz^2+yz^2\right)+\left(x^2z+2xyz+y^2z\right)\)
\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x^2+2xy+y^2\right)\)
\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2\)
\(=\left(x+y\right)\left[xy+z^2+z\left(x+y\right)\right]\)
\(=\left(x+y\right)\left(xy+z^2+xz+yz\right)\)
\(=\left(x+y\right)\left[\left(xy+yz\right)+\left(xz+z^2\right)\right]\)
\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
a, 70a + 84b - 20ab - 24b2
= 14.(5a + 6b) - 4b(5a + 6b)
= (5a + 6b).(14 - 4b)