Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A/
\(A=\frac{(\sqrt{x}+\sqrt{y})^2-(\sqrt{x}-\sqrt{y})^2}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}.\frac{x-y}{\sqrt{xy}}\\ =\frac{x+y+2\sqrt{xy}-(x+y-2\sqrt{xy})}{x-y}.\frac{x-y}{\sqrt{xy}}\\ =\frac{4\sqrt{xy}}{x-y}.\frac{x-y}{\sqrt{xy}}=4\)
Vậy biểu thức A không phụ thuộc giá trị vào biến.
B/
\(B=\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{x+\sqrt{xy}+y}-2\sqrt{y}\\
=\sqrt{x}+\sqrt{y}-(\sqrt{x}-\sqrt{y})-2\sqrt{y}\\
=2\sqrt{y}-2\sqrt{y}=0\)
Vậy giá trị của biểu thức B không phụ thuộc vào giá trị của biến.
1.
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\sqrt{\dfrac{\left(\sqrt{2x-3}+1\right)^2}{\left(\sqrt{2x+3}-1\right)^2}}\end{matrix}\right.\)\(\Leftrightarrow\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{2x-3}+1}{\sqrt{2x+3}-1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\left(\sqrt{2x-3}+1\right)\left(\sqrt{2x+3}+1\right)}{2\left(x+1\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{4x^2-9}+\sqrt{2x-3}+\sqrt{2x+3}+1}{2\left(x+1\right)}\end{matrix}\right.\)
hết tối giải rồi
\(A=\left(\dfrac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(x-y\right)}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(x-y\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1\)
Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=1
\(A=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+y}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)}{\left(x-y\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}+y}{x+y}\cdot\dfrac{x+\sqrt{xy}-\sqrt{xy}+y}{x-y}\)
\(=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}+y}{x-y}\)
\(=\dfrac{\sqrt{xy}+y-x-\sqrt{xy}-y}{x-y}=\dfrac{-x}{x-y}\)
a) Sai đề.
\(\dfrac{a+b}{b^2}\sqrt[]{\dfrac{a^2b^4}{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{b^2\left|a\right|}{\left|a+b\right|}=\left|a\right|\)
b) Sai đề.
\(\dfrac{a\sqrt[]{b}+b\sqrt[]{a}}{\sqrt[]{ab}}:\dfrac{1}{\sqrt[]{a}-\sqrt[]{b}}=\dfrac{\sqrt[]{ab}\left(\sqrt[]{a}+\sqrt[]{b}\right)}{\sqrt[]{ab}}.\left(\sqrt[]{a}-\sqrt[]{b}\right)=a-b\)
a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)
b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)
\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)
c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
\(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\left(dkxd:x,y\ge0,x\ne y\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x^2}-\sqrt{y^2}}.\dfrac{x-y}{\sqrt{xy}}\)
\(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}.\dfrac{x-y}{\sqrt{xy}}\)
\(=\dfrac{4\sqrt{xy}}{\sqrt{xy}}=4\)
\(B=\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\left(dkxd:x,y\ge0,x\ne y\right)\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}-2\sqrt{y}\)
\(=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-2\sqrt{y}\\ =0\)
Vậy biểu thức A và B không phụ thuộc vào biến.