Cho hình thoi ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình

=>EH//BD và EH=BD/2

Xét ΔBCD có

G,F lần lượt là trung điểm của CD,CB

=>GF là đường trung bình

=>GF//BD và GF=BD/2

=>EH//GF và EH=GF

=>EFGH là hình bình hành

20 tháng 8 2023

Hình vẽ đâu b

29 tháng 7 2016

A B C D E F G H

Xét \(\Delta ADB\):

\(AE=EB\left(gt\right)\)

\(HD=HA\left(gt\right)\)

\(\Rightarrow HE\)là đường trung binh cũa \(\Delta ADB\).

\(\Rightarrow HE\)//\(DB\)và \(HE=\frac{1}{2}DB\left(1\right)\)

Xét \(\Delta CDB:\)

\(FB=FC\left(gt\right)\)

\(GC=GD\left(gt\right)\)

\(\Rightarrow GF\) là dường trung bình của \(\Delta CBD\).

\(\Rightarrow GF\)//\(DB\)và \(GF=\frac{1}{2}DB\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\)\(HE\)//\(GF\)và \(HE=GF\)

Vậy tứ giác \(EFGH\)là hình bình hành.

b) Xét \(\Delta AEH\)và \(\Delta EBF\):

\(AE=EB\left(gt\right)\)

Góc A = Góc B = 90o (ABCD là hình chữ nhật)

\(AD=BC\Rightarrow\frac{1}{2}AD=\frac{1}{2}BC\Rightarrow AH=BF\)

\(\Rightarrow\Delta AEH=\Delta EBF\left(c.g.c\right)\)

\(\Rightarrow HE=HF\)

mà tứ giác EFGH là hình bình hành.

Vậy hình bình hành \(EFGH\)là hình thoi.

3 tháng 9 2017

Ta cm theo qui tắc đường trung bình của tam giác là ra ngay 
Ta có E là trung điểm của AB,F là trung điểm của BC>>>EF=1/2AC.tuơng tự HG=1/2 AC>>>EF=HG 
CM ttự với cặp còn lại là ra thôi

10 tháng 5 2017

Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:

E H = F G = 1 2 B D   v à   H G = E F = 1 2 A C

Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình

=>EF//AC và EF=AC/2(1)

Xét ΔCDA có 

G là trung điểm của CD

H là trung điểm của DA

Do đó: GH là đường trung bình

=>GH//AC và GH=AC/2(2)

Từ (1) và (2) suy ra EF//GH và EF=GH

hay EFGH là hình bình hành

b: EF=GH=AC/2=3(cm)

FG=EH=BD/2=4(cm)

Bài 1
Áp dụng tính chất đường trung bình vào
*\large\Delta ABD có: AE=EB, BH=HD  EH //AD, EH=\frac{AD}{2}
*\large\Delta ACD có: AF=CF, DG=GC  GF //AD, GF=\frac{AD}{2}
*\large\Delta ABC có: AE=EB, BF=CF  EF //AD, EF=\frac{BC}{2}
*\large\Delta BCD có: BH=HD, DG=GC  HG //AD, GH=\frac{BC}{2}
Tứ giác EFGH có: EH//GF//AD, EH=GF=\frac{AD}{2}
 EFGH là hbh
a)Để EFGH là hcn  EH \perp \ EF, EF \perp \ FG, FG \perp \ GH
mà EH//AD, EF//BC, FG//AD , GH//BC
 AB \perp \  BC
 \widehat{ADC}+\widehat{BCD}=90^o
__________________

mình lớp 5 mong bạn thông cảm

7 tháng 12 2015

a)      nối A với C ,  B với D được:

EF // AC ( đường trung bình của tam giác BAC)

HG // AC ( "         "          "          "        "          "       ) suy ra EF // AC  do cùng // AC

HE // DB ( đường trung bình tam giác ADB  )

FG // DB ( "     "           "         "         "         "        ) suy ra HE // FG  do cùng // với DB

Xét tứ giác EFGH có 2 cặp cạnh đối song song  nên EFGH là hình bình hành

b)  EFGH là hình ....

Thoi , suy ra EH = GH  nên AC=BD  ( do là đường trung bình của hai tam giác ADB,ADC)

vì AC = BD nên ABCD là hình thang cân

Chữ nhật, suy ra HE vuông góc với HG  nên AC vuông góc với  BD

Hình vuông   ,   kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.

Tích nha☺

 

12 tháng 8 2018

a) EFGH là hình bình hành (các cặp cạnh đối song song)

b) Tam giác CID có PJ//ID và P là trung điểm của CD.

Þ J là trung điểm của CI Þ JC = IJ

Þ AI = IJ = JC;

c) Ta có: SASCQ = 1 2 SEFGH, HE =  2 5 SASCQ.

Þ Kẻ GK ^ CQ tại K Þ SEFGH= GK.HE=GK. 2 5 SASCQ.

Þ SEFGH 2 5 . 1 2 S A B C D ⇒ S = E F G H 1 5 S A B C D