cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi H,K lần lượt là trung điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2023

a: Xét ΔSBD có

H,K lần lượt là trung điểm của SB,SD

=>HK là đường trung bình của ΔSBD

=>HK//BD

mà \(BD\subset\left(ABCD\right)\);HK không thuộc (ABCD)

nên HK//(ABCD)

b: Chọn mp(SBD) có chứa BK

\(O\in BD\subset\left(SBD\right);O\in AC\subset\left(SAC\right)\)

=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi E là giao điểm của SO với BK

=>E là giao điểm của BK với mp(SAC)

=>BK cắt (SAC) tại E

c: \(O\in BD\subset\left(SBD\right);S\in\left(SBD\right)\)

Do đó: \(SO\subset\left(SBD\right)\)

20 tháng 10 2023

a: Xét ΔSAC có M,N lần lượt là trung điểm của SA,SC

=>MN là đường trung bình của ΔSAC

=>MN//AC

mà MN không thuộc mp(ABCD) và \(AC\subset\left(ABCD\right)\)

nên MN//(ABCD)

b: \(A\in AN;A\in\left(ABD\right)\)

=>\(A\in AN\cap\left(ABD\right)\)

mà \(N\in SC\) không thuộc mp(ABD)

nên \(A=AN\cap\left(ABD\right)\)

c: \(S\in\left(SAC\right);E\in AC\subset\left(SAC\right)\)

Do đó: \(SE\subset\left(SAC\right)\)

30 tháng 10 2023

a: Xét ΔSBD có

M,N lần lượt là trung điểm của SB,SD

=>MN là đường trung bình

=>MN//BD

BD//MN

\(MN\subset\left(AMN\right)\)

BD không thuộc mp(AMN)

Do đó: BD//(AMN)

b: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Chọn mp(SBD) có chứa MN

(SBD) giao (SAC)=SO(cmt)

Gọi K là giao điểm của SO với MN

=>K là giao điểm của MN với mp(SAC)

9 tháng 12 2021

9 tháng 12 2021

24 tháng 10 2023

 a) Gọi \(O=AC\cap BD\). Khi đó \(O\in\left(SAC\right)\cap\left(SBD\right)\). Lại có \(S\in\left(SAC\right)\cap\left(SBD\right)\) nên SO chính là giao tuyến của (SAC) và (SBD).

 b) Trong mp (AMNK) cho \(AN\cap MK=L\). Do \(AN\subset\left(SAC\right),MK\subset\left(SBD\right)\) nên \(L\in\left(SAC\right)\cap\left(SBD\right)\) nên \(L\in SO\)\(\Rightarrow\) L là trọng tâm tam giác SAC \(\Rightarrow\dfrac{SL}{LO}=2\). Mà \(\dfrac{SM}{MB}=2\) nên \(\dfrac{SL}{LO}=\dfrac{SM}{MB}\Rightarrow\) LM//BO hay MK//BD, suy ra đpcm.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

- Ta có: S là điểm chung của hai mặt phẳng (SAD) và (SBC) 

Từ S kẻ Sx sao cho Sx // AD // BC. Vậy Sx là giao tuyến của hai mặt phẳng (SAD) và (SBC).

- Ta có: M, P là trung điểm của SA, SD. Suy ra MP // AD // BC 

Có: N là điểm chung của hai mặt phẳng (MNP) và (ABCD)

Từ N kẻ NQ  sao cho NQ // AD.

Vậy NQ là giao tuyến của hai mặt phẳng (MNP) và (ABCD).