Từ điểm A ở ngoài (O,;R) vẽ hai tiếp tuyến AB , AC.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>ΔABC cân tại A

b: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại trung điểm của BC

=>AO\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=OB\cdot OB=OB\cdot OC\)

 

30 tháng 11 2023

loading...

c: Xét (O) có

M,O,N thẳng hàng

=>MN là đường kính của (O)

OA là đường trung trực của BC(cmt)

=>OA\(\perp\)BC tại H và H là trung điểm của BC

\(\widehat{HCM}+\widehat{HMC}=90^0\)(ΔHMC vuông tại H)

\(\widehat{ACM}+\widehat{OCM}=\widehat{OCA}=90^0\)

mà \(\widehat{OCM}=\widehat{HMC}\)(ΔOMC cân tại O)

nên \(\widehat{HCM}=\widehat{ACM}\)

=>CM là phân giác của góc ACB(5)

Xét (O) có

ΔNCM nội tiếp

NM là đường kính

Do đó: ΔNCM vuông tại C

=>CM\(\perp\)CN(6)

Từ (5),(6) suy ra CN là phân giác góc ngoài tại đỉnh C của ΔACH

Xét ΔACH có CN là phân giác góc ngoài tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{NA}{NH}\left(7\right)\)

Xét ΔACH có CM là phân giác góc trong tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{MA}{MH}\left(8\right)\)

Từ (7) và (8) suy ra \(\dfrac{NA}{NH}=\dfrac{MA}{MH}\)

=>\(NA\cdot MH=NH\cdot MA\)

 

đề : Cho đoạn thẳng AB cùng điểm C thuộc đoạn thẳng đó (C khác A và B). Về cùng một nửa mặt phẳng bờ AB, kẻ hai tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm M cố định. Kẻ tia Cz vuông góc với tia CM tại C, tia Cz cắt tia By tại K. Vẽ đường tròn tâm O đường kính MC cắt MK tại E

30 tháng 11 2023

c: Xét (O) có

M,O,N thẳng hàng

=>MN là đường kính của (O)

OA là đường trung trực của BC(cmt)

=>OA\(\perp\)BC tại H và H là trung điểm của BC

\(\widehat{HCM}+\widehat{HMC}=90^0\)(ΔHMC vuông tại H)

\(\widehat{ACM}+\widehat{OCM}=\widehat{OCA}=90^0\)

mà \(\widehat{OCM}=\widehat{HMC}\)(ΔOMC cân tại O)

nên \(\widehat{HCM}=\widehat{ACM}\)

=>CM là phân giác của góc ACB(5)

Xét (O) có

ΔNCM nội tiếp

NM là đường kính

Do đó: ΔNCM vuông tại C

=>CM\(\perp\)CN(6)

Từ (5),(6) suy ra CN là phân giác góc ngoài tại đỉnh C của ΔACH

Xét ΔACH có CN là phân giác góc ngoài tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{NA}{NH}\left(7\right)\)

Xét ΔACH có CM là phân giác góc trong tại đỉnh C

nên \(\dfrac{CA}{CH}=\dfrac{MA}{MH}\left(8\right)\)

Từ (7) và (8) suy ra \(\dfrac{NA}{NH}=\dfrac{MA}{MH}\)

=>\(NA\cdot MH=NH\cdot MA\)

 

29 tháng 7 2017

Nguyễn Thị Ngọc Anh

Cho 2 đường thẳng (d1): y = mx - 2 và (d2): y = (m - 2)x + m,Chứng minh với mọi giá trị của m,đường thẳng (d1) luôn đi qua điểm cố định B,đường thẳng (d2) luôn đi qua điểm cố định C,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

29 tháng 7 2017

bạn lấy bài này ở đâu ra vậy?

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

30 tháng 9 2020

:v Làm bài 31 thôi nhá , còn lại all tự làm -..-

Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).

Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)

+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)

Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)

Diện tích tăng thêm 36 cm2 nên ta có p/trình :

\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)

\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)

\(\Leftrightarrow xy+3x+3y+9=xy+72\)

\(\Leftrightarrow3x+3y=63\)

\(\Leftrightarrow x+y=21\)

+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).

Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)

Diện tích giảm đi 26cm2 nên ta có phương trình :

\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)

\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)

\(\Leftrightarrow xy-4x-2y+8=xy-52\)

\(\Leftrightarrow4x+2y=60\)

\(\Leftrightarrow2x+y=30\)

Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)

Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :

\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)

Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm

25 tháng 2 2018

nhiều bài thế hả trời