Bài toán 6. Tìm tổ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

10) Đặt n = 2k + 1

Khi đó A = 1 + 3 + 5 + 7 + ... + n

= 1 + 3 + 5 + 7 + ... + (2k + 1) 

= [(2k + 1 - 1) : 2 + 1][(2k + 1 + 1) : 2 

= (k + 1)2

=> A là số chính phương

Cấm cop mạng nhé

Mình làm rồi bây giờ thử sức các bạn

Bài toán 1. So sánh: 200920 và 2009200910Bài toán 2. Tính tỉ số , biết: Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3 + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu...
Đọc tiếp

Bài toán 1. So sánh: 200920 và 2009200910

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

 Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y+ 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

5
21 tháng 9 2020

Bài 1: 

\(2009^{20}=\left(2009^2\right)^{10}=\left(2009.2009\right)^{10}\)

\(2009.2009^{10}=\left(10001.2009\right)^{10}\)

Ta thấy:

\(2009< 10001\Rightarrow2009.2009< 1001.2009\)

\(\Rightarrow\left(2009.2009\right)^{10}< \left(10001.2009\right)^{10}\)

\(\Rightarrow2009^{20}< 20092009^{10}\)

Bài 3: 

a) Vì \(x,y\in Z\Rightarrow25-y^2⋮8\Rightarrow25-y^2=\left\{0;8;16;24\right\}\)

\(\Rightarrow\hept{\begin{cases}y=\pm5\Rightarrow x=0\\y=\sqrt{17}\left(lo\text{ại}\right)\end{cases}}\)

\(\hept{\begin{cases}y=\pm3\Rightarrow x=2011\\y=\pm1\Rightarrow x=2012\end{cases}}\)

b) \(x^3y=xy^3+1997\)

\(\Leftrightarrow x^3y-xy^3=1997\)

\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)

\(\Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)

Ta có: 1997 là số nguyên tố; xy(x+y)(x-y) là hợp số

\(\Rightarrow\left(x;y\right)\in\varnothing\) 

c) \(x+y+9=xy-7\)

\(\Rightarrow x+y+16=xy\Rightarrow x+16=xy-y=y\left(x-1\right)\)

\(\Rightarrow y=\frac{x+16}{x-1}\left(x\ne1\right)\)

Mà do y thuộc Z\(\Rightarrow\frac{x+16}{x-1}\in Z\Rightarrow x+16⋮x-1\Rightarrow\left(x-1\right)+17⋮x-1\Rightarrow x-1\in\text{Ư}\left(17\right)=\left\{\pm1;\pm17\right\}\)

\(x\in\left\{0;2;-16;18\right\}\)(Thỏa mãn do khác 1)

+)  Nếu \(x=0\Rightarrow16+y=0\Rightarrow y=-16\)

+) Nếu \(x=2\Rightarrow18+y=2y\Rightarrow y=18\)

+) Nếu \(x=-16\Rightarrow y=-16y\Rightarrow y=0\)

+) Nếu \(x=18\Rightarrow y=2\)

Vậy \(\left(x;y\right)=\left(0,-16\right);\left(2;18\right);\left(-16;0\right);\left(18;2\right)\)

Bài 4:

n số \(x_1,x_2,x_3,....,x_n\)mỗi số nhận giá trị 1 hoặc -1

\(\Rightarrow\)n tích \(x_1.x_2+x_2.x_3+...+x_n.x_1\)mỗi tích bằng 1 hoặc -1

Mà: \(x_1.x_2+x_2.x_3+...+x_n.x_1=0\)

=> Số tích có giá trị bằng 1 hoặc -1 và bằng \(\frac{n}{2}\)

\(\Rightarrow n⋮2\)(n chẵn)

Xét \(A=\left(x_1.x_2\right).\left(x_2.x_3\right)....\left(x_n.x_1\right)\)

=> x12.x22....xn2=1>0

=> Số thừa số -1 là số chẵn

=>n/2 chẵn

=> n chia hết cho 4(đpcm)

21 tháng 9 2020

Bài 6:

Hướng dẫn: giả sử \(A\left(x\right)=a_o+a_1x+a_2x^2+...+a_{4018}x^{4018}\)

Khi đó A(1)\(=a_o+a_1+a_2+...+a_{4018}\)

do A(1) =0 nên \(a_o+a_1+a_2+...+a_{4018}=0\)

Bài 7:

Gợi ý: Đặt x=111.1( n chữ số 1)

Ta có: 10n=9x+1

=> a=x10n+x=x(9x+1)+x;b=10x+1;c=6x

Ta có: a+b+c+8=x(9x+1)+x+10x+1+6x+8=9x2+18x+9=(3x+3)2

Cách khác: Quy về dạng tổng quát : a=(102n-1):9,...

Bài 9:

- Những phân số lớn hơn a nhỏ hơn b có mẫu là 7 là:

\(a+\frac{1}{7};a+\frac{2}{7};a+\frac{3}{7};...;b-\frac{2}{7};b-\frac{1}{7}\)

Tổng của chúng là: \(A=\left(a+\frac{1}{7}\right)+\left(a+\frac{2}{7}\right)+...+\left(b-\frac{2}{7}\right)+\left(b-\frac{1}{7}\right)\)

\(=\frac{1}{7}\text{[}\left(7a+1\right)+\left(7a+2\right)+...+\left(7b-2\right)+\left(7b-1\right)\text{]}\)

\(=\frac{1}{7}.\frac{1}{2}\text{[}\left(7a+1\right)+\left(7b-1\right)\text{]}\text{[}\left(7b-1\right)-\left(7a+1\right)+1\text{]}\)

\(=\frac{1}{14}\left(7a+7b\right)\left(7b-7a-1\right)=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)\)

- Những phân số lớn hơn a nhỏ hơn b sau khi rút gọn(vì 7 là số nguyên tố) là:

a+1;a+2;...;b-2;b-1

Tổng của chúng là: \(B=\left(a+1\right)+\left(a+2\right)+...+\left(b-2\right)+\left(b-1\right)\)

\(=\frac{1}{2}\text{[}\left(a+1\right)+\left(b-1\right)\text{]}\text{[}\left(b-1\right)-\left(a+1\right)+1\text{]}\)

\(=\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}\)

Tổng phải tìm là: \(A-B=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)-\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}=3\left(a^2-b^2\right)\)

Bài 10:

Đặt \(n=2k-1\left(k\in N,k>1\right)\). Ta có:

\(A=1+3+5+...+\left(2k-1\right)=\frac{1+\left(2k-1\right)}{2}.k=k^2\)

Vậy A là số chính phương

\(A\left(x\right)=\left(3-4x+x^2\right)^{2004}\left(3+4x+x^2\right)^{2005}\)

Đa thức A(x) sau khi bỏ dấu ngoặc:

\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)

Với n  =  2 . 2004  +  2 . 2005  =  8018

Ta thay   x=1  thì   \(A\left(1\right)=a_n+a_{n-1}+a_1+a_0\)

⇒  A(1)   là tổng các hệ số của   A(x)  khi bỏ dấu ngoặc 

Ta có: \(A\left(1\right)=\left(3-4\cdot1+1^2\right)^{2004}\left(3+4\cdot1+1^2\right)^{2005}\)

\(=0^{2004}\cdot8^{2005}=0\)

Vậy tổng các hệ số của đa thức   A(x)   nhận được sau khi bỏ dấu ngoặc là   0  

 
DD
6 tháng 10 2021

Tổng các hệ số của đa thức đã cho sau khi khai triển là: 

\(A\left(1\right)=\left(3-4.1+1^2\right)^{2004}.\left(3+4.1+1^2\right)^{2005}=0\)

15 tháng 3 2018

A=x22x+3A=x22x1+4A=(x2+2x+1)+4A=(x+1)2+4Do(x+1)20x(x+1)20xA=(x+1)2+44xDấu “=” xảy ra khi: (x+1)2=0x+1=0x=1VậyA(Max)=4 khi x=1A=−x2−2x+3A=−x2−2x−1+4A=−(x2+2x+1)+4A=−(x+1)2+4Do(x+1)2≥0∀x⇒−(x+1)2≤0∀x⇒A=−(x+1)2+4≤4∀xDấu “=” xảy ra khi: (x+1)2=0x+1=0⇔x=−1VậyA(Max)=4 khi x=−1

B=x2+4x7B=x2+4x43B=(x24x+4)3B=(x2)23Do (x2)20x(x2)20xB=(x2)233xDấu “=” xảy ra khi: (x2)2=0x2=0x=2VậB(Max)=3 khi x=2

15 tháng 3 2018

A=x22x+3A=x22x1+4A=(x2+2x+1)+4A=(x+1)2+4Do(x+1)20x(x+1)20xA=(x+1)2+44xDấu “=” xảy ra khi: (x+1)2=0x+1=0x=1VậyA(Max)=4 khi x=1

15 tháng 3 2018

a,2xx2=(x22x+1)+1a,2x−x2=−(x2−2x+1)+1

=(x1)2+11x=−(x−1)2+1≤1∀x

Vậy GTLN của biểu thức là 1 khi x - 1 =0 => x = 1

b,2x24x+6=2(x2+2x+1)+8b,−2x2−4x+6=−2(x2+2x+1)+8

=2(x+1)2+88x=−2(x+1)2+8≤8∀x

vậy GTLN của bt là 8 khi x + 1 =0 => x = -1

~ Học tốt~

15 tháng 3 2018

a. \(-\left(x^2-2x+1\right)+1.\)

      \(-\left\{\left(x^2-x\right)-\left(x-1\right)\right\}+1\)

\(-\left\{x\left(x-1\right)-\left(x-1\right)\right\}+1\Leftrightarrow-\left(x^2-1\right)+1\le1\) " =" xảy ra khi x^2=1

\(b.-2x^2-4x-2+8\)

\(-2\left(x^2+2x+1\right)+8\)

\(-2\left(x+1\right)^2+8\le8\) dấu = xảy ra khi x=-1

Điền số thích hợp vào chỗ chấm:9 + 6 = ...A. 13B. 14C. 15D. 162Điền số thích hợp vào chỗ chấm:9 + 7 = ...A. 13B. 14C. 15D. 163Điền số thích hợp vào chỗ chấm:9 + 9 = ...A. 16B. 17C. 18D. 194Điền số thích hợp vào chỗ chấm:9 + 3 = 9 + ...+ 2 = 12A. 1B. 2C. 3D. 45Điền số thích hợp vào chỗ chấm:9 + 4 = 9 + 1 + ... = 13A. 1B. 2C. 3D. 4 Câu 1: Cho tam giác ABC, góc A = 640, góc B = 800. Tia phân giác góc BAC cắt BC tại...
Đọc tiếp

Điền số thích hợp vào chỗ chấm:

9 + 6 = ...

A. 13

B. 14

C. 15

D. 16

2

Điền số thích hợp vào chỗ chấm:

9 + 7 = ...

A. 13

B. 14

C. 15

D. 16

3

Điền số thích hợp vào chỗ chấm:

9 + 9 = ...

A. 16

B. 17

C. 18

D. 19

4

Điền số thích hợp vào chỗ chấm:

9 + 3 = 9 + ...+ 2 = 12

A. 1

B. 2

C. 3

D. 4

5

Điền số thích hợp vào chỗ chấm:

9 + 4 = 9 + 1 + ... = 13

A. 1

B. 2

C. 3

D. 4 

Câu 1: Cho tam giác ABC, góc A = 640, góc B = 800. Tia phân giác góc BAC cắt BC tại D.

Số đo của góc là bao nhiêu?

A. 70o          B. 102o           C. 88o           D. 68o

Câu 2: Đơn thức -1/2 xy2 đồng dạng với:

A. -1/2 x2y       B. x2y2            C. xy2           D. -1/2 xy

Câu 3: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AI vuông góc với BC. Độ dài cạnh AI là:

A. 3√3 cm        B. 3 cm           C. 3√2 cm        D. 6√3 cm

Câu 4: Tìm n ϵ N, biết 3n.2n = 216, kết quả là:

A. n = 6          B. n = 4           C. n = 2         D. n = 3

Câu 5: Xét các khẳng định sau. Tìm khẳng định đúng. Ba đường trung trực của một tam giác đồng qui tại một điểm gọi là:

A. Trọng tâm của tam giác           B. Tâm đường tròn ngoại tiếp

C. Trực tâm của tam giác           D. Tâm đường tròn nội tiếp

Câu 6: Cho tam giác ABC có gó A = 500; góc B : góc C = 2 : 3. Bất đẳng thức nào sau đây đúng?

A. AC < AB < BC     B. BC < AC < AB     C. AC < BC < AB      D. BC < AB < AC

Câu 7: Cho điểm P (-4; 2). Điểm Q đối xứng với điểm P qua trục hoành có tọa độ là:

A. Q(4; 2)           B. Q(-4; 2)           C. Q(2; -4)           D. Q(-4; -2)

Câu 8: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là:

A. Trọng tâm tam giác                    B. Trực tâm tam giác

C. Tâm đường tròn ngoại tiếp tam giác        D. Tâm đường tròn nội tiếp tam giác

Câu 9:

P(x) = x2 - x3 + x4 và Q(x) = -2x2 + x3 – x4 + 1 và R(x) = -x3 + x2 +2x4.

P(x) + R(x) là đa thức:

A. 3x4 + 2x2       B. 3x4           C. -2x3 + 2x2        D. 3x4 - 2x3 + 2x2

Câu 10: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là:

A. 8cm           B. √54cm         C. √44cm           D. 6cm

Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?

A. -5/6           B. -2/3            C. 3/8              D. 3/2

Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:

A. n = 4          B. n = 1           C. n = 3            D. n = 2

Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6

A. 1             B. -2             C. 0               D. -6

Câu 14: Tìm n ϵ N, biết 4n/3n = 64/27, kết quả là:

A. n = 2          B. n = 3           C. n = 1            D. n = 0

Câu 15: Tính (155 : 55).(35 : 65)

A. 243/32        B. 39/32           C. 32/405          D. 503/32

 

3

Nhiều vcl~~~~~~~~~~~~~~~~

spam ít thôi bạn 1 ngày spam được 5 lần spam ít còn làm chứ 

5 tháng 3 2019

lắm quá

A(x)=(34+x2)2004(3+4x+x2)2005A(x)=(3−4+x2)2004(3+4x+x2)2005

Đa thức A(x)A(x) sau khi bỏ dấu ngoặc:

A(x)=anxn+an1xn1+...+a1x+a0A(x)=anxn+an−1xn−1+...+a1x+a0

Với n=2.2004+2.2005=8018n=2.2004+2.2005=8018

Ta thay x=1x=1 thì A(1)=an+an1+...+a1+a0A(1)=an+an−1+...+a1+a0

A(1)⇒A(1) là tổng các hệ số của A(x)A(x) khi bỏ dấu ngoặc

Ta có: A(1)=(34.1+12)2004(3+4.1+12)2005A(1)=(3−4.1+12)2004(3+4.1+12)2005

=02004.82005=0=02004.82005=0

Vậy tổng các hệ số của đa thức A(x)A(x) nhận được sau khi bỏ dấu ngoặc là 0

DD
14 tháng 5 2021

Tổng các hệ số của đa thức đã cho khi khai triển là: 

\(A\left(1\right)=\left(3-4+1\right)^{2004}.\left(3+4+1\right)^{2005}=0\).