K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

dễ thôi

........

30 tháng 12 2018

tự vẽ hình nha

a, xét TG ADM và ABM có

 AM cạnh chung

DM = BM (gt)

DA = BA (gt)

=>TG ADM = TG ABM(c-c-c)

b, ta có DMA + BMA = 180 (KB)

DMA = BMA (2 góc tương ứng) =>DMA = BMA = 90

=> AK VGóc với DB

a) Xét ∆ vuông ABC và ∆ vuông AED ta có : 

AB = AD (gt)

AC = AD (gt)

=> ∆ABC = ∆AED ( 2 cgv)

=> BD = DE 

b) Xét ∆ABD có : 

BAC = 90° 

=> AD\(\perp\)AE 

Mà AB = AD (gt)

=> ∆ABD vuông cân tại A 

=> BDC = 45° 

Chứng minh tương tự ta có : 

BCE = 45° 

=> BDC = BCE = 45° 

Mà 2 góc này ở vị trí so le trong 

=> BD//CE

1 tháng 1 2021

A B C D F A B C D F A B C D E F H K a. CM AB=AF

Vì BE cắt AC tại F mà BE vuông góc AD tại E nên AE vuông góc BF 

Xét tam giác AEB và tam giác AEF có

\(\widehat{BAE}=\widehat{FAE}\)(phân giác góc A cắt BC tại D)

AE chung

\(\widehat{AEB}=\widehat{AEF}\)(AE vuông góc BF)

=> tam giác AEB=tam giác AEF (g.c.g)

=>AB=AF(2 cạnh tương ứng)

b.Ta có HF // DK (đường thẳng đi qua F (gọi là a)cắt AE tại H nên H thuộc a ; a//BC mà D,K thuộc BC)

xét tứ giác HFKD :HF // DK(cmt);HF=DK (gt) 

=>HFKD là hình bình hành (dhnb)

Nên DH=FK,DH//FK (t/c)

c. Vì AB <AC nên góc ABC > góc C (Cái này là lí thuyết ) 

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
3 tháng 5 2019

a, áp dụng định lí py-ta-go vào tam giác vuông ta có:

             \(BC^2=AB^2+AC^2\)

=>  \(AC^2=BC^2-AB^2\)

=> \(AC^2\)= 169 - 25 =144 cm

=> AC=12 cm

vậy AC=12 cm

b, xét 2 t.giác vuông ABE và DBE có:

           AB=DB(gt)

           BE cạnh chung

=> t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c, vì t.giác ABE=t.giác DBE(câu b) => AE=DE

xét 2 t.giác vuông AEF và DEC có:

         AE=DE

        \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=> t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn kề)

=> È=EC(2 cạnh tương ứng)

d, gọi O là giao điểm của EB và AD

xét t.giác ABO và t.giác DBO có:

          OB cạnh chung

         \(\widehat{ABO}\)=\(\widehat{DBO}\)(t.giác ABE=t.giác DBE)

         AB=BD(gt)

=> t.giác ABO=t.giác DBO(c.g.c)

=> OA=OD=> O là trung điểm của AD(1)

\(\widehat{AOB}\)=\(\widehat{DOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB}\)=\(\widehat{DOB}\)=90 độ => BO\(\perp\)AD(2)

từ (1) và (2) => BE là trung trực của AD

           

A B C D E 5cm 13cm F O

17 tháng 2 2020

Bài làm ( Bạn chú ý vẽ hình ra nha , mình ngại làm )

a)+) Xét tam giác ADE có : AD = AE ( GT )

=> ADE là tam giác cân tại A ( định nghĩa )

=> Góc ADE = \(\frac{180^o-\widehat{A}}{2}\left(1\right)\)

+) Vì ABC cân tại A

\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 ) => Góc ADE = Góc ABC

Mà 2 góc này ở vị trí đồng vị

=> DE // BC ( ĐPCM )

b) Ta có : 

AD + DB = AB

AE + EC = AC

Mà AD = AE ; AB = AC 

=> DB = EC 

Xét tam giác MBD và tam giác MCE có :

DB = EC 

Góc DBM = góc ECM ( tam giác ABC cân tại A )

BM = MC ( M là trung điểm của BC )

=> TAm giác MBD = tam giác MCE ( c . g . c )

c) Xét tam giác AMD bà tam giác AME có :

AD = AE

AM : cạnh chung

DM = EM ( tam giác MBD = tam giác MCE )

=> tam giác AMD = tam giác AME ( c.c.c )