Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ab+ac}{2}\)=\(\frac{ba+bc}{3}\)=\(\frac{ca+cb}{4}\)=\(\frac{2\left(ab+ac+bc\right)}{9}\)(áp ụng tính chất dãy tỉ số bằng nhau)
*\(\frac{ab+ac}{2}\)=\(\frac{2\left(ab+ac+bc\right)}{9}\)=> 4,5(ab+ac)=2(ab+ac+bc) =>4,5ab+4,5ac=2ab+2ac+2bc=>2,5ab+2,5ac=2bc(rút gọn)
=>5(ab+ac)=4bc(1)=>1,25 (ab+ac)=bc
*\(\frac{ab+ac}{2}\)=\(\frac{ba+bc}{3}\)=\(\frac{ba+1,25ab+1,25ac}{3}\)=\(\frac{2,25ab+1,25ac}{3}\)
=>3(ab+ac)=2(2,25ba+1,25ac)=>3ab+3ac=4,5ba+2,5bc
=>0,5ac=1,5ba=>ac=3ab(2)
thay (2) vào (1) ta có 5(ab+3ab)=4bc=>5.4ab=4bc=> 5a=c (rút gọn) =>a/1=c/5(3)
Mà ac=3ab=>c=3b=>c/3=b/1 (4)
từ (3) và (4) suy ra: a/1=c/5 ;b/1=c/3=>\(\frac{a}{3}\) =\(\frac{b}{5}\) = \(\frac{c}{15}\) (đpcm)
sau có bài nào tương tự thì cứ hỏi mình nhá
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{ab+ac+bc+ab-\left(ac+bc\right)}{2+3-4}=\frac{ab+ac+bc+ab-ac-bc}{1}\)
\(=\frac{2ab}{1}\) (1)
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{ab+ac+ca+cb-\left(bc+ba\right)}{2+4-3}=\frac{ab+ac+ca+cb-bc-ab}{3}\)
\(=\frac{2ac}{3}\) (2)
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{bc+ba+ca+cb-\left(ab+ac\right)}{3+4-2}=\frac{bc+ba+ca+cb-ab-ac}{5}\)
\(=\frac{2bc}{5}\) (3)
Từ (1) ; (2) \(\Rightarrow\frac{2ab}{1}=\frac{2ac}{3}\)\(\Rightarrow\frac{b}{1}=\frac{c}{3}\)\(\Rightarrow\frac{b}{5}=\frac{c}{15}\)
Từ (2) ; (3) \(\Rightarrow\frac{2ac}{3}=\frac{2bc}{5}\)\(\Rightarrow\frac{a}{3}=\frac{b}{5}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\) (đpcm)
ta có (a+b)(b+c)(c+a)+abc
=abc+b2c+ac2+bc2+a2b+ab2+a2c+abc+abc
=(abc+b2c+ab2)+(abc+ac2+bc2)+(abc+a2c+a2b)
=b(a+b+c)+c(a+b+c)+a(a+b+c)=0