K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

Áp dụng BĐT AM-GM ta có:

\(3\left(x+y+z\right)\le\frac{\left(x+y+z\right)^2+9}{2}\)

Ta tiếp tục qui tụ bài toán về BĐT khác:

\(\Rightarrow2xyz+2\left(x^2+y^2+z^2\right)+10\ge\left(x+y+z\right)^2+9\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\)

Sử dụng tiếp \(xyz\ge xz+yz-z\)ta cần phải chứng minh \(x^2+y^2+z^2+2\left(xz+yz-z\right)+1\ge2xy+2yz+2zx\)

Hay \(\left(x-y\right)^2+\left(z-1\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng nên ta có ĐPCM

Hoặc ta có thể áp dụng BĐT AM-GM bộ 3 số ta có: 

\(2xyz+1\ge3\sqrt[3]{x^2y^2z^2}=\frac{3xyz}{\sqrt[3]{3xyz}}\ge\frac{9xyz}{x+y+z}\)

Tiếp tục ta chứng minh: \(x^2+y^2+z^2+\frac{9}{x+y+z}\ge2\left(xy+yz+zx\right)\)

Đẳng thức Schur chỉ xảy ra khi \(x=y=z=1\)

NV
14 tháng 5 2020

a/ \(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

b/ \(\Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z=1\)

c/ BĐT sai

Y
7 tháng 5 2019

\(9x^2y^2+y^2-6xy-2y+2\)

\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)

\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)

7 tháng 9 2019

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

4 tháng 6 2015

\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)+\left(x^2y^2z^2-x^2z^3\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy\left(y^2-z\right)\right)-\left(yz^2\left(y^2-z\right)\right)+\left(x^2z^2\left(y^2-z\right)\right)\)
\(P=\left(-x^3+xy-yz^2+x^2z^2\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2z^2-x^3\right)-\left(yz^2-xy\right)\right)\left(y^2-z\right)\)
\(P=\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2-y\right)\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(a.c\right).b\)
\(P=a.b.c\)
Vậy giá trị của P không phụ thuộc vào biến x;y;z (điều cần chứng minh)

3 tháng 6 2015

Mình cũng đang bí câu này nè 

29 tháng 8 2016

\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^2\left(y-x^2\right)+xyz\left(xyz-1\right)\)

\(P=x^3z-x^3y^2+xy^3-y^3z^2+yz^2-x^2z^2+x^2y^2z^2-xyz\)

29 tháng 8 2016

cám ơn nhiều 

20 tháng 4 2017

ah cả x,y,z >0 nữa

21 tháng 4 2017

 nhân thêm x,y,z vào từng phân thức rồi sử dụng bđt schwarz