Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 x 3 + 5 x 7 + 9 x 11 + ... + 99 x 101
6A = 6 x (1 x 3 + 5 x 7 + 9 x 11 + ... + 99 x 101)
6A = 1 x 3 x 6 + 5 x 7 x 6 + 9 x 11 x 6 + ... + 99 x 101 x 6
6A = 1 x 3 x (5 + 1) + 3 x 5 x (7 - 1) + 5 x 7 x (9 - 3) + ⋯ + 99 x 101 x (103 - 97)
6A = 1 x 3 x 1 + 1 x 3 x 5 + 3 x 5 x 7 - 1 x 3 x 5 + 5 x 7 x 9 - 3 x 5 x 7 + ⋯ + 99 x 101 x 103 - 97 x 99 x 101
6A = 1 x 3 x 1 + (1 x 3 x 5) + (3 x 5 x 7) - (1 x 3 x 5) + (5 x 7 x 9 ) - (3 x 5 x 7) + ⋯ + (99 x 101 x 103) - (97 x 99 x 101)
6A = 3 - 99 x 101 x 103 = 1019703
=> A = 1019703/6
A=1x3 +3x5 +5x7 +....+99x101
6A=1x3x(5+1) + 3x5x(7-1) +5x7x(9-3) +...+ 99x101x(103-97)
6A=3+ 1x3x5 +3x5x7-1x3x5 + 5x7x9 -3x5x7 +....+99x101x103 - 97x99x101
6A=3+99x101x103=1019703
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
A= 1/(1x3) + 1/(3x5)+ 1/(5x7) + 1/(7x9) + 1/(9x11)
A x 2 = 2/(1x3) + 2/(3x5)+ 2/(5x7) + 2/(7x9) + 2/(9x11)
Nhận xét :
2/(1x3) = 1 - 1/3
2/(3x5) = 1/3 - 1/5
2/(5x7) = 1/5 - 1/7
2/(7x9) = 1/7 - 1/9
2/(9x11) = 1/9 - 1/11
A x 2 = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
A x 2 = 1 - 1/11
A x 2 = 10/11
A = 10/11 : 2 = 5/11
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}\)
\(=\frac{50}{101}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)
\(=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
\(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{101}\right)\)
\(=2.\frac{96}{505}\)
\(=\frac{192}{505}\)
A = 1 x 3 + 5 x 7 + 9 x 11 + ... + 99 x 101
6A = 6 x (1 x 3 + 5 x 7 + 9 x 11 + ... + 99 x 101)
6A = 1 x 3 x 6 + 5 x 7 x 6 + 9 x 11 x 6 + ... + 99 x 101 x 6
6A = 1 x 3 x (5 + 1) + 3 x 5 x (7 - 1) + 5 x 7 x (9 - 3) + ⋯ + 99 x 101 x (103 - 97)
6A = 1 x 3 x 1 + 1 x 3 x 5 + 3 x 5 x 7 - 1 x 3 x 5 + 5 x 7 x 9 - 3 x 5 x 7 + ⋯ + 99 x 101 x 103 - 97 x 99 x 101
6A = 1 x 3 x 1 + (1 x 3 x 5) + (3 x 5 x 7) - (1 x 3 x 5) + (5 x 7 x 9 ) - (3 x 5 x 7) + ⋯ + (99 x 101 x 103) - (97 x 99 x 101)
6A = 3 - 99 x 101 x 103 = 1019703
=> A = 1019703/6