K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

a) Đường thẳng (d) đi qua A(1; 0) => x = 1 và y = 0

DO đó: 0 = m - 3 <=> m = 3

b) pt hoành độ giao điểm giữa (P) và (d) là:

 x2 = mx - 3 <=> x2 - mx + 3 = 0 (1)

\(\Delta\)= (-m)2 - 3.4 = m2 - 12

Để (P) cắt (d) tại 2 điểm pb <=>  pt (1) có 2 nghiệm pb 

<=> \(\Delta\)> 0 <=> m2 - 12 > 0 <=> \(\orbr{\begin{cases}m>2\sqrt{3}\\m< -2\sqrt{3}\end{cases}}\)

Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=3\end{cases}}\)

Theo bài ra, ta có: |x1 - x2| = 2

<=> x12 - 2x1x2 + x22 = 4

<=> (x1 + x2)2 - 4x1x2 = 4

<=> m2 - 4.3 = 4

<=> m2 - 16 = 0

<=> (m  - 4)(m + 4) = 0

<=> \(\orbr{\begin{cases}m=4\\m=-4\end{cases}}\)(tm)

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

PTHĐGĐ là;

x^2-6x+m-3=0

Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48

Để PT có hai nghiệm phân biệt thì -4m+48>0

=>m<12

(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2

=>(x1-1)(-x1x2+x2+x1x2-1)=2

=>x1x2-(x1+x2)+1=2

=>m-3-6+1=2

=>m-8=2

=>m=10

26 tháng 5 2021

a) \(A\in\left(d\right)\Rightarrow9=-3m+1-m^2\)

\(\Leftrightarrow m^2+3m+8=0\) \(\Leftrightarrow\left(m+\dfrac{3}{2}\right)^2+\dfrac{23}{4}=0\)(vn)

Vậy không tồn tại m để (d) đi qua A(-1;9)

b) Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=3mx+1-m^2\)

\(\Leftrightarrow2x^2-3mx-1+m^2=0\)

\(\Delta=9m^2-4.2\left(-1+m^2\right)=m^2+8>0\) với mọi m

=> Pt luôn có hai nghiệm pb => (d) luôn cắt (P) tại hai điểm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m}{2}\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)

\(x_1+x_2=2x_1x_2\)

\(\Leftrightarrow\dfrac{3m}{2}=2.\dfrac{m^2-1}{2}\) \(\Leftrightarrow2m^2-3m-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

9 tháng 6 2022

Tất cảToánVật lýHóa họcNgữ vănĐịa lýGiáo dục công dân

29 tháng 12 2023

a: Phương trình hoành độ giao điểm là:

\(x^2=2mx-m^2+4\)

=>\(x^2-2mx+m^2-4=0\)

\(\Delta=\left(-2m\right)^2-4\left(m^2-4\right)=4m^2-4m^2+16=16>0\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-4\end{matrix}\right.\)

Sửa đề: \(x_1^2-3x_1+x_2^2-3x_2=4\)

=>\(\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)=4\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=4\)

=>\(\left(2m\right)^2-2\cdot\left(m^2-4\right)-3\cdot2m=4\)

=>\(4m^2-2m^2+8-6m-4=0\)

=>\(2m^2-6m+4=0\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>\(\left[{}\begin{matrix}m-1=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Bài 1: 

a) Để (d) đi qua A(1;-9) thì

Thay x=1 và y=-9 vào (d), ta được:

\(3m\cdot1+1-m^2=-9\)

\(\Leftrightarrow-m^2+3m+1+9=0\)

\(\Leftrightarrow m^2-3m-10=0\)

\(\Leftrightarrow m^2-5m+2m-10=0\)

\(\Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-2\end{matrix}\right.\)

Vậy: Để (d) đi qua A(1;-9) thì \(m\in\left\{5;-2\right\}\)

30 tháng 10 2021

PTHĐGĐ là:

\(-x^2=-mx+m-1\)

\(\Leftrightarrow x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot1\left(m-1\right)\)

\(=m^2-4m+4\)

\(=\left(m-2\right)^2\ge0\forall m\)

Do đó: Phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:,

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=17\)

\(\Leftrightarrow m^2-2\left(m-1\right)-17=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)

14 tháng 5 2015
a, để (d)//y=x-5 thì a=a' và b≠b' Hay m-2=1 và 3m+1≠5 => m=3 và m≠4/3 (tm) Vậy khi m=3 thì 2 đường thẳng song song vs nhau b,(d) đi qua M(1;-2) nên x=1 và y=-2 Thay vào (d) ta được: -2=(m-2). 1+3m+1 <=> m-2+3m+1=-2 <=> 4m=-1 <=> m=-1/4 (tm) Vậy khi m=-1/4 thì (d) đi qua M(1;-2)