b) x(x - y) - x(x + y) + y (x2 – x)         ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021
62124+269666
24 tháng 10 2021

\(4x^2-25+\left(2x+7\right).\left(5-2x\right)\)

\(=\left(2x+5\right).\left(2x-5\right)-\left(2x+7\right).\left(2x-5\right)\)

\(=\left(2x+5-2x-7\right).\left(2x-5\right)\)

\(=-2.\left(2x-5\right)\)

\(a^2x^2-a^2x^2-b^2x^2+b^2y^2\)

\(=a^2.\left(x^2-y^2\right)-b^2.\left(x^2-y^2\right)\)

\(=\left(a^2-b^2\right).\left(x^2-y^2\right)\)

\(=\left(a-b\right).\left(a+b\right).\left(x-y\right).\left(x+y\right)\)

\(x^2-y^2+12y-36\)

\(=x^2-\left(y^2-12y+36\right)\)

\(=x^2-\left(y-6\right)^2\)

\(=\left(x-y+6\right).\left(x+y-6\right)\)

\(\left(x+2\right)^2-x^2+2x-1\)

\(=\left(x+2\right)^2-\left(x^2-2x+1\right)\)

\(=\left(x+2\right)^2-\left(x-1\right)^2\)

\(=[x+2-\left(x-1\right)].[x+2+\left(x-1\right)]\)

\(=\left(x+2-x+1\right).\left(x+2+x-1\right)\)

\(=3.\left(2x+1\right)\)

\(16x^2-y^2=\left(4x\right)^2-y^2=\left(4x-y\right).\left(4x+y\right)\)

\(1+27x^3=1^3+\left(3x\right)^3=\left(1+3x\right).\left(1-3x+9x^2\right)\)

13 tháng 3 2016

Bài  \(4a!\)

Ta có:

\(2x^2+y^2+2xy-2x+2y+5=0\)

\(\Leftrightarrow\)  \(x^2+2xy+y^2+2x+2y+x^2-4x+5=0\)

\(\Leftrightarrow\)  \(\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)  \(\left(x+y+1\right)^2+\left(x-2\right)^2=0\)   \(\left(\text{*}\right)\)

Vì  \(\left(x+y+1\right)^2\ge0\)  và  \(\left(x-2\right)^2\ge0\)  với mọi  \(x,y\)

nên từ  \(\left(\text{*}\right)\)  \(\Rightarrow\)   \(\left(x+y+1\right)^2=0\)   \(V\)   \(\left(x-2\right)^2=0\)  

                    \(\Leftrightarrow\)    \(x+y+1=0\)   \(V\)   \(x-2=0\)

                    \(\Leftrightarrow\)    \(x+y=-1\)   \(V\)  \(x=2\)

                    \(\Leftrightarrow\)    \(x=2\)  và  \(y=-3\)

Vậy,  cặp số cần tìm là  \(\left(x;y\right)=\left(2;-3\right)\)

13 tháng 3 2016

Bài \(3a.\)

Vì  \(xy=13\)  nên  \(xy+1=14\)

Từ giả thiết suy ra  \(xy\left(x+y\right)+x+y=2016\)

                     \(\Leftrightarrow\)  \(\left(x+y\right)\left(xy+1\right)=2016\)

                     \(\Leftrightarrow\)  \(x+y=144\) 

               Khi đó,  \(\left(x+y\right)^2=144^2=20736\)

                     \(\Leftrightarrow\)  \(x^2+2xy+y^2=20736\)

                     \(\Leftrightarrow\)  \(x^2+y^2=20736-2xy=20736-26=20710\)

\(b,c\)  tối giải cho 

Bài  \(4a.\)  tối giải!

28 tháng 11 2021

g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)

f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)

e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

24 tháng 6 2015

ĐÂY NÀY:

( x +y) ^2 = a^2 => x^2 + 2xy + y^2 = a^2 

=> 2xy = a^2 - ( x^2  + y^2) = a^2 -b

=> xy = a^2-b/2

Ta có E = x^3 + y^3 = ( x+ y)(  x^2 - xy + y^2)

 E = a ( b - a^2-b/2)

29 tháng 11 2021

ko bít

29 tháng 11 2021

Answer:

\(5x^2-10xy+5y^2-20z^2\)

\(=5.\left(x^2-2xy+y^2-4z^2\right)\)

\(=5.[\left(x+y\right)^2-\left(2z\right)^2]\)

\(=5.\left(x+y-2z\right).\left(x+y+2z\right)\)

\(16x-5x^2-3\)

\(=\left(-5x^2+15x\right)+\left(x-3\right)\)

\(=-5x.\left(x-3\right)+\left(x-3\right)\)

\(=\left(1-5x\right).\left(x-3\right)\)

\(x^2-5x+5y-y^2\)

\(=(x-y).(x+y)-5.(x-y)\)

\(=(x-y).(x+y-5)\)

\(3x^2-6xy+3y^2-12z^2\)

\(=3.(x^2-2xy+y^2-4z^2)\)

\(=3[\left(x-y\right)^2-\left(2z\right)^2]\)

\(=3.(x-y-2z).(x-y+2z)\)

\(x^2+4x+3\)

\(=(x^2+x)+(3x+3)\)

\(=x.(x+1)+3.(x+1)\)

\(=(x+1).(x+3)\)

\((x^2+1)^2-4x^2\)

\(=(x^2-2x+1).(x^2+2x+1)\)

\(=(x-1)^2.(x+1)^2\)

\(x^2-4x-5\)

\(=(x^2+x)-(5x+5)\)

\(=x.(x+1)-5.(x+1)\)

\(=(x-5).(x+1)\)

25 tháng 12 2016

\(2P=2x^2+2y^2-2xy-2x+2y+2\)

= (x2 - 2xy + y2) + \(\frac{4}{3}\)(y - x) + \(\frac{4}{9}\)+ (x2 - \(\frac{2}{3}\)x + \(\frac{1}{9}\)) + (y2 + \(\frac{2}{3}\)y + \(\frac{1}{9}\)) + \(\frac{4}{3}\)

= (y - x + \(\frac{2}{3}\))2 + (x - \(\frac{1}{3}\))2 + (y + \(\frac{1}{3}\))2 + \(\frac{4}{3}\)\(\ge\frac{4}{3}\)

\(\Rightarrow P\ge\frac{2}{3}\)

Vậy GTNN là \(\frac{2}{3}\)đạt được khi x = \(\frac{1}{3}\); y = - \(\frac{1}{3}\)  

25 tháng 12 2016

Nhiều quá không muốn giải. Bạn chọn đi. Mình giúp bạn giải 1 câu (bạn thích câu nào mình giải câu đó cho ) :D