Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3.5.7.11.13.37-10101}{1212120+40404}\)
\(=\frac{15015.37-273.37}{32760.37+1093.37}\)
\(=\frac{14742.37}{33853.37}\)
\(=\frac{14742}{33853}\)
A= [5.11.10101 -10101]/[10101.120+10101.4] = 10101.[5.11-1] / 101.[120+4] = 54/124=27/62
\(A=\frac{3.5.7.11.13.37-10101}{1212120+40404}\)
\(A=\frac{\left(3.7.13.17\right).\left(5.11\right)-10101}{120.10101+4.10101}\)
\(A=\frac{10101.55-10101.1}{120.10101+4.10101}\)
\(A=\frac{10101.\left(55-1\right)}{10101.\left(120+4\right)}\)
\(A=\frac{10101.54}{10101.124}\)
\(A=\frac{54}{124}\)
\(A=\frac{27}{62}\)
- chúc bn hok tốt
#Hạ
\(=\frac{5.11.3.7.11.13-3.7.11.13}{120.10101+4.10101}=\frac{3.7.11.13\left(5.11-1\right)}{10101\left(120+4\right)}=\frac{10101.54}{10101.124}=\frac{54}{124}=\frac{27}{62}\)
.5.7.11.13.37-10101/1212120+40404
=3.5.7.11.13.37-10101/1212120.1/10+40404 (vì 1/1212120=1/121212.1/10)
= 3.37.7.11.13.5-101010/121212.1/100+40404
=111.1001.5-5/6.1/100+40404
=151515.5-250/3
=595959-250/3
=1787876/3
A= [5.11.10101 -10101]/[10101.120+10101.4] = 10101.[5.11-1] / 101.[120+4] = 54/124=27/62
đúng nhé
Ta có:
\(A=\frac{3.5.7.11.13.37-10101}{1212120+40404}\)
\(=\frac{\left(3.7.11.13.37\right).5-10101.1}{120.10101+4.10101}\)
\(=\frac{10101.\left(5-1\right)}{10101.\left(120+4\right)}\)
\(=\frac{4}{124}=\frac{1}{31}\)
Sai rồi:
A = 5.11.(3.7.13.37) - 10101/(10101.120 + 10101.4)
= (5.11.10101 - 10101)/(10101.120+10101.4)
= 10101(5.11-1)/10101(120+4)
= 27/62.
A = \(\frac{3^4\left(5.79-1\right)}{2^2.3^2\left(5.79-1\right)}=\frac{9}{4}\); B = \(\frac{3.7.13.37\left(5.11-1\right)}{4.3.7.13.37\left(3.5-1\right)}=\frac{54}{4.14}=\frac{2.9}{4.2.7}=\frac{9}{28}\)
\(A=\frac{3\cdot5\cdot7\cdot11\cdot13\cdot37-10101}{1212120+40404}\)
\(A=\frac{\left[3\cdot7\cdot11\cdot13\cdot37\right]\cdot5-10101}{120\cdot10101+4\cdot10101}\)
\(A=\frac{10101\cdot5-10101}{10101\cdot\left[120+4\right]}\)
\(A=\frac{10101\cdot\left[5-1\right]}{10101\cdot\left[120+4\right]}\)
\(A=\frac{10101\cdot4}{10101\cdot124}=\frac{4}{124}=\frac{1}{31}\)