K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

ài này là bài khó chắc là đi thi violympic à


 

4 tháng 3 2018

a) điều kiện phân số A tồn tại là :

\(n-1\ne0\Rightarrow n\ne1\)

b)\(+n=0\Rightarrow\frac{13}{0-1}=-13\).

\(+n=5\Rightarrow\frac{13}{5-1}=\frac{13.}{4}\)

\(+n=-7\Rightarrow\frac{13}{-7-2}=\frac{13}{-9}.\)

c)để A là số nguyên

\(\Rightarrow13⋮n-1\Rightarrow13.\left(n-1\right)+12\)

\(\Rightarrow n-1\inƯ\left(12\right)=[\pm1;\pm2;\pm3;\pm4;\pm6;\pm12]\)

\(\Rightarrow\)n-1=1\(\Rightarrow\)n=2

n-1=-1\(\Rightarrow\)n=0

n-1=2\(\Rightarrow\)n=3

n-1=-2\(\Rightarrow\)n=-1

n-1=3\(\Rightarrow\)n=4

n-1=-3\(\Rightarrow\)n=-2

n-1=4\(\Rightarrow\)n=5

n-1=-4\(\Rightarrow\)n=-3

n-1=6\(\Rightarrow\)n=7

n-1=-6\(\Rightarrow\)n=-5

n-1=12\(\Rightarrow\)n=13

n-1=-12\(\Rightarrow\)n=-11

12 tháng 3 2018

a, \(ĐK:\text{ }n-2\ne0\Leftrightarrow n\ne2\)

b, \(A=\frac{3}{n-2};\text{ }n=-2\)

\(\Rightarrow A=\frac{3}{-2-2}=\frac{3}{-4}\)

\(A=\frac{3}{n-2}\text{; }n=0\)

\(\Rightarrow A=\frac{3}{0-2}=\frac{3}{-2}\)

\(A=\frac{3}{n-2};\text{ }n=5\)

\(\Rightarrow A=\frac{3}{5-2}=\frac{3}{3}=1\)

c, \(A=\frac{3}{n-2}=1\Leftrightarrow n-2=\frac{3}{1}\)

                                     \(\Rightarrow n-2=3\)

                                     \(\Rightarrow n=3+2\)

                                     \(\Rightarrow n=5\)

\(A=\frac{3}{n-2}=\frac{1}{2}\Leftrightarrow n-2=3:\frac{1}{2}\)

                                    \(\Rightarrow n-2=6\)

                                    \(\Rightarrow n=6+2\)

                                    \(\Rightarrow n=8\)

d, \(A\inℤ\text{ }\Leftrightarrow\text{ }3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)

12 tháng 3 2018

a)để A là phân số thì n-2 phải khác 0 =>n phải khác 2

b)+)n=-2

=>A=\(\frac{3}{-2-2}\)=\(\frac{3}{-4}\)

+)n=0

=>A=\(\frac{3}{0-2}=\frac{3}{-2}\)

+)n=5

=>A=\(\frac{3}{5-2}=\frac{3}{3}=1\)

c) theo như kết quả phần b thì để A=1 thì n phải =5

để A=\(\frac{1}{2}\)thì \(\frac{3}{n-2}=\frac{1}{2}\)=>\(\frac{3}{n-2}=\frac{3}{6}\)=>n-2=6=>n=6+2=>n=8

để A thuộc Z thì n-2 phải <0 =>n phải bé hơn 2 để n thuộc Z

a) n phải thuộc Z

b)A=\(\frac{13}{0-1}\)=\(\frac{13}{-1}\)=(-13) khi n=0

A=\(\frac{13}{5-1}\)=\(\frac{13}{4}\) khi n=5

A=\(\frac{13}{7-1}\)=\(\frac{13}{6}\) khi n=7

c)để a là số nguyên thì n-1=13k(k thuộc Z)

=>n=13k+1(k thuộc Z)

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

1 tháng 5 2019

a, Để A là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)

b, \(\frac{3n-5}{n+4}\in Z\Rightarrow\frac{3n+12-17}{n+4}\in Z\Rightarrow\frac{3\left(n+4\right)-17}{n+4}\in Z\)

\(\Rightarrow\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}\in Z\Rightarrow3-\frac{17}{n+4}\in Z\)

Mà \(3\in Z\Rightarrow\frac{17}{n+4}\in Z\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

TH1: n + 4 = -1 => n = -1 - 4 = -5

TH2: n + 4 = 1 => n = 1 - 4 = -3

TH3: n + 4 = -17 => n = -17 - 4 = -21

TH4: n + 4 = 17 => n = 17 - 4 = 13

Mặt khác \(n\inℕ^∗\Rightarrow n=13\) mới có thể thỏa mãn.