K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)

\(=\left(4\sqrt{2}-5\sqrt{2}+\sqrt{27}\right)\left(\sqrt{27}+5\sqrt{2}-4\sqrt{2}\right)\)

\(=\left(-\sqrt{2}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{2}\right)\)

\(=\left(\sqrt{27}+\sqrt{2}\right)\left(\sqrt{27}-\sqrt{2}\right)\)

\(=27-2\)

\(=25\)

10 tháng 9 2019

@Nguyen Viet Lam giải hộ mk vs

10 tháng 9 2019

= ( 3 √3-√ 2) *( 3 √ 3 +√ 2)

=(3 √ 3)^2-2

=25

bạn có thể kt lại bằng máy tính

10 tháng 9 2019

5√3 - 4√3 /3 +9/2*2√6/3+6√3

=15√3/3-4√3/3+9√6/3+18√3/3

=17√3/3+9√6/3

9 tháng 8 2019

Ta có:

\(P=\sqrt{\frac{15}{2}}\cdot\sqrt{\frac{10\left(a-1\right)^2}{3}}\\ =\sqrt{\frac{15}{2}\cdot\frac{10\left(a-1\right)^2}{3}}\\ =\sqrt{25\left(a-1\right)^2}\\ =5\left|a-1\right|\\ =\left[{}\begin{matrix}5\left(a-1\right)\left(a=1\right)\\5\left(1-a\right)\left(a< 1\right)\end{matrix}\right.\\ =\left[{}\begin{matrix}5a-5\\5-5a\end{matrix}\right.\)

P.s: Ko chắc lắm nha :v

10 tháng 9 2019

undefined

10 tháng 9 2019

=( 8 căn 7-5 căn 7+ 6 căn 7-4 căn 7)*căn 7

= 5 căn 7*căn 7

=35

( bấm máy tính là ra mà bạn, hì)

18 tháng 2 2020

Ta có :

\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right).\left(\sqrt{x}+2\right)\)

\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)\)

\(=\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

NV
18 tháng 9 2019

\(A=15+12+4\sqrt{45}+12\sqrt{5}=27+24\sqrt{5}\)

\(B=\left(2\sqrt{3}+6\sqrt{3}\right).\frac{\sqrt{3}}{2}-5\sqrt{6}=\frac{8\sqrt{3}.\sqrt{3}}{2}-5\sqrt{6}=12-5\sqrt{6}\)

\(C=4\sqrt{3}+\frac{4}{\sqrt{3}}+10\sqrt{5}-\frac{10}{\sqrt{5}}=\frac{16}{\sqrt{3}}+8\sqrt{5}\)