Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
\(2x\left(x-3\right)-x+3=0\)
<=> \(2x\left(x-3\right)-\left(x-3\right)=0\)
<=> \(\left(x-3\right)\left(2x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
Vậy...
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
a, 5x(x - 1) - (1 - x) = 0
=> 5x(x - 1) + (x - 1) = 0
=> (x - 1)(5x + 1) = 0
=> x - 1 = 0 hoặc 5x - 1 = 0
=> x = 1 hoặc x = \(\dfrac{1}{5}\)
b, (x - 3)2 - (x + 3)2 = 24
=> (x - 3 + x + 3)(x - 3 - x - 3) = 24
=> 2x. (-6) = 24
=> -12x = 24
=> x = -2
c, 2x(x2 - 4) = 0
=> 2x(x - 2)(x + 2) = 0
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
d, 2(x + 5)2 - x2 - 5x = 0
=> 2(x + 5)2 - x(x + 5) = 0
=> (x + 5) [2(x + 5) - x] = 0
=> (x + 5) (2x - 10 - x) = 0
=> (x + 5) ( x - 10) = 0
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=10\end{matrix}\right.\)
e, (2x - 3)2 - (x +5)2 = 0
=> (2x - 3 + x + 5) (2x - 3 - x - 5) = 0
=> (3x + 2)(x - 8) = 0
\(\Rightarrow\left[{}\begin{matrix}3x+2=0\\x-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2}{3}\\x=8\end{matrix}\right.\)
f, 3x2 - 48x = 0
=> 3x(x - 16) = 0
\(\Rightarrow\left[{}\begin{matrix}3x=0\\x-16=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
chúc bạn học tốt!
a) 2x (x-5) -(x2-10x +25)=0
\(\Leftrightarrow\)2x(x-5)-(x-5)2=0
\(\Leftrightarrow\)(x-5)(2x-x+5)=0
\(\Leftrightarrow\)(x-5)(x+5)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
b) x2 - 9 +3x(x+3) = 0
\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0
\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0
\(\Leftrightarrow\)(x+3)(x-3+3x)=0
\(\Leftrightarrow\)(x+3)(4x-3)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)
c) x3 - 16x = 0
\(\Leftrightarrow\)x(x2-16)=0
\(\Leftrightarrow\)x(x-4)(x+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) (2x+3)(x-2) - (x2 -4x+4) = 0
\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0
\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0
\(\Leftrightarrow\)(x-2)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
e) 9x2 -(x2 -2x +1)=0
\(\Leftrightarrow\)(3x)2-(x-1)2=0
\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0
\(\Leftrightarrow\)(2x+1)(4x-1)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
f)x3-4x2 -9x +36 = 0
\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0
\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0
\(\Leftrightarrow\)(x-4)(x2-9)=0
\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
g) 3x - 6 = (x-1).(x-2)
\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)
\(\Leftrightarrow\)x-1=3
\(\Leftrightarrow\)x=4
i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)
k) x2 -1 = (x-1).(2x+3)
\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)
\(\Leftrightarrow\)x+1=2x+3
\(\Leftrightarrow\)x-2x=3-1
\(\Leftrightarrow\)-x=2
\(\Leftrightarrow\)x=-2
l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6
\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6
\(\Leftrightarrow\)6x-8=6
\(\Leftrightarrow\)6x=14
\(\Leftrightarrow\)x=\(\frac{7}{3}\)
Bài 1:
a) Bạn xem lại đề
b)
\(x^3-1=0\)
\(\Leftrightarrow (x-1)(x^2+x+1)=0\)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}x+(\frac{1}{2})^2+\frac{3}{4}=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0\)
\(\Rightarrow x^2+x+1\neq 0\)
Do đó: \(x-1=0\Rightarrow x=1\) là nghiệm duy nhất
Bài 2:
a) \((x^2-5x)^2+10(x^2-5x)+24=0\)
\(\Leftrightarrow (x^2-5x)^2+2.5(x^2-5x)+5^2-1=0\)
\(\Leftrightarrow (x^2-5x+5)^2-1=0\)
\(\Leftrightarrow (x^2-5x+5-1)(x^2-5x+5+1)=0\)
\(\Leftrightarrow (x^2-5x+4)(x^2-5x+6)=0\)
\(\Leftrightarrow (x-1)(x-4)(x-2)(x-3)=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-4=0\\ x-2=0\\ x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=4\\ x=2\\ x=3\end{matrix}\right.\)
b)
\((x+2)(x+3)(x-5)(x-6)=180\)
\(\Leftrightarrow [(x+2)(x-5)][(x+3)(x-6)]=180\)
\(\Leftrightarrow (x^2-3x-10)(x^2-3x-18)=180\)
\(\Leftrightarrow a(a-8)=180\) (đặt \(x^2-3x-10=a\) )
\(\Leftrightarrow a^2-8a+16-196=0\)
\(\Leftrightarrow (a-4)^2-14^2=0\)
\(\Leftrightarrow (a-4-14)(a-4+14)=0\Leftrightarrow (a-18)(a+10)=0\)
\(\Rightarrow a=18\) hoặc $a=-10$
+) Nếu $a=18$ thì \(x^2-3x-10=18\)
\(\Leftrightarrow x^2-3x-28=0\)
\(\Leftrightarrow (x-7)(x+4)=0\Rightarrow \left[\begin{matrix} x=7\\ x=-4\end{matrix}\right.\)
+) Nếu $a=-10$ thì \(x^2-3x-10=-10\Leftrightarrow x^2-3x=0\Leftrightarrow x(x-3)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=3\end{matrix}\right.\)
Vậy pt có 4 nghiệm \(x\in \left\{7;-4;0;3\right\}\)