Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính
\(\Rightarrow\widehat{AMB}=90^0\)
\(\Rightarrow AM\perp MB\)
Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình
\(\Rightarrow\Delta ANB\)cân tại B
\(\Rightarrow NB=BA\)
\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định
b) Vì BM là đường cao của tam giác ABN cân tại B
=> BM là phân giác góc ABN
=> góc ABM= góc NBM
Xét tam giác ARB và tam giác NRB có:
\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)
\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)
\(\Rightarrow RN\perp BN\)
\(\Rightarrow RN\)là tiếp tuyến của (C)
c) Ta có: A,P,B thuộc (O); AB là đường kính
\(\Rightarrow\widehat{APB}=90^0\)
\(\Rightarrow AP\perp BP\)
\(\Rightarrow RN//AP\)( cùng vuông góc với NB )
Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q
\(\Rightarrow Q\)là trực tâm tam giác NAB
\(\Rightarrow NQ\perp AB\)
=> NQ // AR( cùng vuông góc với AB)
Xét tứ giác ARNQ có:
\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành
Mà 2 đường chéo RQ và AN vuông góc với nhau
=> ARNQ là hình thoi
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Câu 1:
a, \(P=a+b-a.b\\ < =>P=2+\sqrt{3}+2-\sqrt{3}-\left(2+\sqrt{3}\right).\left(2-\sqrt{3}\right)\\ < =>P=4-\left(4-2\sqrt{3}+2\sqrt{3}-3\right)\\ < =>P=4-4+2\sqrt{3}-2\sqrt{3}+3\\ P=3\)
b, Gỉai hptrình:
\(\left\{{}\begin{matrix}3x+5=5\\x-2y=-3\end{matrix}\right.\)
Giaỉ hpt là tìm: x= 1; y=2
Câu 1b/ ta có: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(-3+2y\right)+y=5\\x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y-9=5\\x-2y=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
câu 2:
ta có:
\(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)
\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\dfrac{x-1}{x}\)
câu 5; ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\ge\dfrac{4}{2\sqrt{2}}=\sqrt{2}\)
Bài 2:
a: Để (d) tạo với trục Ox một góc nhọn thì 1-2m>0
=>2m<1
=>m<1/2
b: y=(1-2m)x+m-1
=x-2mx+m-1
=>x-2mx+m-1-y=0
=>m(-2x+1)+x-y-1=0
Điểm mà (d) luôn đi qua có tọa độ là:
-2x+1=0 và x-y=1
=>x=1/2 và y=x-1=1/2-1=-1/2
c: \(d\left(O;d\right)=\dfrac{\left|\left(1-2m\right)\cdot0+\left(-1\right)\cdot0+m-1\right|}{\sqrt{\left(1-2m\right)^2+1}}=\dfrac{\left|m-1\right|}{\sqrt{\left(2m-1\right)^2+1}}\)
Để d lớn nhất thì \(\sqrt{\left(2m-1\right)^2+1}_{MIN}\)
=>m=1/2