K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

a, Ta co góc BAD + góc ADC = 180 độ 

mà góc ở vị trí trong cùng phía

=> AB//DC

b, Ta có góc ABC + góc xBC = 180 độ ( kề bù)

=> góc ABC = 180 - góc xBC = 180 -32 =148 độ

Ta có AB // DC hay Ax//DC

=> góc xBC = góc BCD = 32 độ ( sole trong)

1 tháng 10 2021

a, Ta có \(\widehat{BAD}\) + \(\widehat{ADC}\) = 180 độ 

mà 2 góc này ở vị trí trong cùng phía của AD cắt AB và CD

=> AB//DC

b, Ta có \(\widehat{ABC}\) + \(\widehat{xBC}\) = 180 độ ( kề bù)

=> \(\widehat{ABC}\) = 180 - \(\widehat{xBC}\) = 180 -32 =\(148^0\)

Ta có AB // DC hay Ax//DC

=> \(\widehat{xBC}\) = \(\widehat{BCD}\) = \(32^0\) ( so le trong)

31 tháng 10 2017
x 10 -2 -3 1 0 1.21 0.25
\(^{x^2}\) 100 4 9 1 0 1.4641

0.0625

1.44 -25 \(\dfrac{4}{9}\)
2.0736 625 \(\dfrac{16}{81}\)

okhehe

19 tháng 4 2017

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )

19 tháng 4 2017

(2x3 - 2x + 1) - (3x2 + 4x - 1) = 2x3 - 3x2 - 6x + 2.

Vậy chọn đa thức thứ hai.


Bài 1: 

Giá trị (x)14151617181920242528 
Tần số (n)2133314111N = 20

 

Bài 2: 

Giá trị (x)ĐỏVàngHồngTrắngTím sẫmTím nhạtXanh da trờiXanh lá câyXanh nước biển 
Tần số(n)654433311N=30
 
19 tháng 4 2017

Hướng dẫn:

+ Trên cạnh thứ nhất lấy hai điểm phân biệt A; B trên cạnh thứ hai lấy hai điểm C; D sao cho khoảng cách từ C; D đến đỉnh của góc lần lượt bằng khoảng cách từ đỉnh của góc với A, B

+ Xác định giao điểm I của BC và AD; tia vẽ từ đỉnh của góc qua I chính là tia phân giác của góc đó.

+ Phần chứng minh tương tự như bài 34

19 tháng 4 2017

+ Trên cạnh thứ nhất lấy hai điểm phân biệt A; B trên cạnh thứ hai lấy hai điểm C; D sao cho khoảng cách từ C; D đến đỉnh của góc lần lượt bằng khoảng cách từ đỉnh của góc với A, B

+ Xác định giao điểm I của BC và AD; tia vẽ từ đỉnh của góc qua I chính là tia phân giác của góc đó.

+ Phần chứng minh tương tự như bài 34

18 tháng 4 2017

Hỏi đáp Toán

Ta có tọa độ các điểm: A(-2; 2); B(-4; 0); C(1; 0); D(2; 4); E(3; -2); F(0; -2); G(-3; -2)