Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(2^{2010}-M=2^0+2^1+...+2^{2008}+2^{2009}\)
\(2\left(2^{2010}-M\right)=2+2^2+...+2^{2009}+2^{2010}\)
\(2\left(2^{2010}-M\right)-\left(2^{2010}-M\right)=\left(2+2^2+...+2^{2009}+2^{2010}\right)-\left(2^0+2^1+...+2^{2008}+2^{2009}\right)\)
\(2^{2010}-M=2^{2010}-1\)
\(M=2^{2010}-2^{2010}+1\)
\(M=1\)
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(2^{2010}-M=2^{2009}+2^{2008}+...+2^1+2^0\)
\(2\left(2^{2010}-M\right)=2^1+2^2+....+2^{2009}+2^{2010}\)
\(2\left(2^{2010}-M\right)-\left(2^{2010}-M\right)=\left(2^1+2^2+....+2^{2009}+2^{2010}\right)-\left(2^0+2^1+...+2^{2008}+2^{2009}\right)\)
\(2^{2010}-M=2^{2010}-1\)
\(M=2^{2010}-2^{2010}+1\)
\(M=1\)
M=22010-(22009+22008+22007+...+21+20)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
Vậy M=1
Đặt M = 2^2010 - A
\(2A=2+2^2+...+2^{2010}\)
\(2A-A=\left(2+2^2+...+2^{2010}\right)-\left(1+2+...+2^{2009}\right)\)
\(A=2^{2010}-1\)
\(\Rightarrow M=2^{2010}-2^{2010}+1\)
\(\Rightarrow M=1\)
Vậy,.............
\(M=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(\Rightarrow2M=2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)
\(\Rightarrow2M-M=2^{2011}-2^{2010}-1=2^{2010-1}\)
M=2^2010-(2^2009+2^2008+2^2007+...+2^1+2^0)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
vậy M=1
đúng mjk với nha
ĐẶt A = 2^0 + 2^1 +.. + 2^2009
2A = 2^ 1 + 2^2 +.... + 2^2009 +2 ^2010
2A - A = 2^1 + 2^2 + . ... + 2^2009 +2^2010 - 2 ^0 - 2^1 - 2^2 -..-2^3009
A = 2^2010 - 2^0 = 2^2010 - 1
M = 2^2010 - A = 2^2010 - (2^2010 - 1) = 2^2010 - 2^2010 +1 = 1
\(M=2^{2010}-\left(2^{2009}+2^{2008}+....+2^1+2^0\right)\)
Đặt:
\(S=2^{2009}+2^{2008}+....+2^1+2^0\)
\(S=2^0+2^1+.....+2^{2008}+2^{2009}\)
\(2S=2\left(2^0+2^1+.....+2^{2008}+2^{2009}\right)\)
\(2S=2^1+2^2+.....+2^{2009}+2^{2010}\)
\(2S-S=\left(2^1+2^2+.....+2^{2009}+2^{2010}\right)-\left(2^0+2^1+.....+2^{2008}+2^{2009}\right)\)
\(S=2^{2010}-2^0=2^{2010}-1\)
Thay S vào M ta có:
\(M=2^{2010}-\left(2^{2010}-1\right)\)
\(M=2^{2010}-2^{2010}+1=1\)
M=22010-(22009+22008+22007+...+21+20)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
Vậy M=1
M = 22010 - ( 22009 + 22008 + 22007 + ... + 21 + 20)
Ta có: N = 22009 + 22008 + 22007 + ... + 21 + 20
2N = 22010 + 22009 + 22008 + ... + 22 + 21
N = 2N - N = ( 22010 + 22009 + 22008 + ... + 22 + 21) - ( 22009 + 22008 + 22007 + ... + 21 + 20 )
N = 22010 - 20
Suy ra: M = 22010 - 22010 - 20
M = 0 - 1
M = -1
Vậy M = -1
\(\text{đầu tiên bạn phải biết công thức này:}\)
\(a^{n\: }-b^{n\: }=(a-b)\left(a^{n-1\: }+a^{n-2\: }.b+a^{n-3}.b^2+...+b^{n-1}n\right)\)
\(\text{2^2009 +2^2008 + 2 + 1 = (2^2010 - 1)/(2-1) = 2^2010 - 1 }\)
\(\text{2^2010-2^2009-2^2008...-2-1 = 2^2010 - (2^2009 +2^2008 + 2 + 1) =1}\)
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(2^{2010}-M=1+2+...+2^{2008}+2^{2009}\)
\(2\left(2^{2010}-M\right)=2+2^2+...+2^{2009}+2^{2010}\)
\(2\left(2^{2010}-M\right)-\left(2^{2010}-M\right)=\left(2+2^2+...+2^{2009}+2^{2010}\right)-\left(1+2+...+2^{2008}+2^{2009}\right)\)
\(2^{2010}-M=2^{2010}-1\)
\(M=2^{2010}-2^{2010}-1=-1\)
\(N=2^{2009}+2^{2008}+...+2+1\)
\(\Leftrightarrow2N=2^{2010}+2^{2009}+...+2^2+2\)
=>\(N=2^{2010}-1\)
\(M=2^{2010}-2^{2010}+1=1\)