Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
b) Ta có: \(-x^2+5x-6=0\)
\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)
\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)
\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: x∈{2;3}
c) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
⇔(4x2-10x)-(2x-5)=0
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
d) Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)
e) Ta có: \(x^3+2x^2-x-2=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;1;-1\right\}\)
g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)
\(\Leftrightarrow-24x-8=0\)
\(\Leftrightarrow-8\left(3x+1\right)=0\)
⇔3x+1=0
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy: \(x=-\frac{1}{3}\)
h) \(2x^3-7x^2+7x-2=0\)
\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy S = {2; 1; \(\frac{1}{2}\)}
i) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)
Vậy S = {1;-2}
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
\(a,\left(2x+1\right)\left(x^2+2\right)=0\)
\(\left[{}\begin{matrix}2x=-1\\x^2=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{matrix}\right.\)
\(b,\left(x^2+x+1\right)\left(6-2x\right)=0\)
\(6-2x=0\Leftrightarrow2x=6\Leftrightarrow x=3\)
\(c,\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)
\(\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=-\frac{4}{3}\end{matrix}\right.\)
\(d,\left(x^2+4\right)\left(7x-3\right)=0\)
\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x^2=-4\\7x=3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\pm2\left(voli\right)\\x=\frac{3}{7}\end{matrix}\right.\)
\(e,\left(8x-4\right)=\left(x^2+x+2\right)\)
\(8x-4=x^2+x+2\)
\(8x-4-x^2-x-2=0\)
\(7x-6-x^2=0\)
\(\left(x-6\right)\left(x-1\right)=0\)
\(\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
\(f,\left(2x-1\right)\left(3x+2\right)\left(5-x\right)\)
đề thiếu hay là rút gọn vậy bn
a) \(x^4-x^2-2=0\)
\(\Leftrightarrow x^4-2x^2+x^2-2=0\)
\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\left(tm\right)\\x^2+1=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)
b) \(\left(x+1\right)^4-\left(x^2+2\right)^2=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x^2+2\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2x+1=x^2+2\\x^2+2x+1=-x^2-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x^2+2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(tm\right)\\2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{2}\right\}\)
c) \(3x^2-2x-8=0\)
\(\Leftrightarrow3x^2-6x+4x-8=0\)
\(\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
d) \(2x^3-3x^2+3x+8=0\)
\(\Leftrightarrow2x^3+2x^2-5x^2-5x+8x+8=0\)
\(\Leftrightarrow2x^2\left(x+1\right)-5x\left(x+1\right)+8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-5x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2-5x+8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\2\left(x-\frac{5}{4}\right)^2+\frac{39}{8}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
e) \(x^3-0,25x=0\)
\(\Leftrightarrow x\left(x^2-0,25\right)=0\)
\(\Leftrightarrow x\left(x-0,5\right)\left(x+0,5\right)=0\)
\(\Leftrightarrow\)\(x=0\)
hoặc \(x-0,5=0\)
hoặc \(x+0,5=0\)
\(\Leftrightarrow\)\(x=0\)
hoặc \(x=0,5\)
hoặc \(x=-0,5\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;0,5;-0,5\right\}\)
f) \(x^4+2x^3+x^2=0\)
\(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-1\right\}\)
g) \(x^3-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)
h) \(6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)