Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{2x-27}{29}\)
\(\Leftrightarrow\dfrac{x-1}{13}-1-\dfrac{2x-13}{15}-1=\dfrac{3x-15}{27}-1-\dfrac{2x-27}{29}-1\)
\(\Leftrightarrow\dfrac{x-1-13}{13}-\dfrac{2x-13-15}{15}=\dfrac{3x-15-27}{27}-\dfrac{4x-27-29}{29}\)
\(\Leftrightarrow\dfrac{x-14}{13}-\dfrac{2x-24}{15}=\dfrac{3x-42}{27}-\dfrac{4x-56}{29}\)
\(\Leftrightarrow\dfrac{x-14}{13}-\dfrac{2\left(x-14\right)}{15}-\dfrac{3\left(x-14\right)}{27}-\dfrac{4\left(x-14\right)}{29}=0\)
\(\Leftrightarrow\left(x-14\right)\left(\dfrac{1}{13}-\dfrac{2}{15}-\dfrac{3}{27}-\dfrac{4}{29}\right)=0\)
\(\Leftrightarrow x-14=0\) ( Vì: \(\dfrac{1}{13}-\dfrac{2}{15}-\dfrac{3}{27}-\dfrac{4}{29}\ne0\))
\(\Leftrightarrow x=14\)
a. \(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)
\(\Leftrightarrow2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
\(\Leftrightarrow12x+10-10x-3=8x+4x+2\)
\(\Leftrightarrow12x-10x-8x-4x=2-10+3\)
\(\Leftrightarrow-10x=-5\Leftrightarrow x=\dfrac{1}{2}\)
b. \(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+6x+6\)
\(\Leftrightarrow6x^2+2=6x^2+6x+6\)
\(\Leftrightarrow6x^2-6x^2-6x=6-2\Leftrightarrow-6x=4\)
\(\Leftrightarrow x=\dfrac{-2}{3}\)
c. \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\left(\dfrac{x+2}{13}+1\right)+\left(\dfrac{2x+45}{15}-1\right)=\left(\dfrac{3x+8}{37}+1\right)+\left(\dfrac{4x+69}{9}-1\right)\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
Vì \(\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)>0\)
\(\Leftrightarrow x+15=0\Leftrightarrow x=-15\)
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
a) \(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{36}{x^2-9}\)
\(\Rightarrow\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\dfrac{\left(x+3\right)^2-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\left(x+3\right)^2-\left(x-3\right)^2=36\)
\(\Rightarrow\left(x^2+6x+9\right)-\left(x^2-6x+9\right)=36\)
\(\Rightarrow x^2+6x+9-x^2+6x-9=36\)
\(\Rightarrow12x=36\)
\(\Rightarrow x=\dfrac{36}{12}\)
Vậy x = 3
b) \(x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\)
\(\Rightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
c) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+17}{15}\)
\(\Rightarrow\dfrac{3\left(2x-1\right)}{15}-\dfrac{5\left(x-2\right)}{15}=\dfrac{x+17}{15}\)
\(\Rightarrow\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+17}{15}\)
\(\Rightarrow\dfrac{6x-3-5x+10}{15}=\dfrac{x+17}{15}\)
... Phần còn lại cũng tương tự như vậy thôi
a) 1x−1−3x2x3−1=2xx2+x+11x−1−3x2x3−1=2xx2+x+1
Ta có: x3−1=(x−1)(x2+x+1)x3−1=(x−1)(x2+x+1)
=(x−1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1
Vậy ĐKXĐ: x ≠ 1
Khử mẫu ta được:
x2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x
⇔4x2−3x−1=0⇔4x2−3x−1=0
⇔4x(x−1
\(\dfrac{x-1}{2}-\dfrac{x+1}{15}-\dfrac{2x-13}{6}=0\)
\(\Rightarrow\dfrac{15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)}{30}=0\)
\(\Rightarrow15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)
\(\Rightarrow15x-15-2x-2-10x+65=0\)
\(\Rightarrow3x-48=0\)
\(\Rightarrow3x=48\Rightarrow x=16\)
Chúc bạn học tốt!
Bài Làm:
\(\dfrac{x-1}{2}-\dfrac{x+1}{15}-\dfrac{2x-13}{6}=0\)
\(\Leftrightarrow\)\(15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)
\(\Leftrightarrow15x-15-2x-2-10x+65=0\)
\(\Leftrightarrow15x-2x-10x=15+2-65\)
\(\Leftrightarrow3x=-48\)
\(\Leftrightarrow x=-16\)
Vậy \(x=-16\).
\(S=\left\{-16\right\}\)
Chúc pạn hok tốt!!!