K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

a) Ta có: \(P=\dfrac{\sqrt{a}-1}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\dfrac{6-2\left(\sqrt{a}-1\right)^2}{a\sqrt{a}-1}+\dfrac{2}{\sqrt{a}-1}\)

\(=\dfrac{\sqrt{a}-1}{a+\sqrt{a}+1}-\dfrac{-2a+4\sqrt{a}+4}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}+\dfrac{2}{\sqrt{a}-1}\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\dfrac{-2a+4\sqrt{a}+4}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}+\dfrac{2\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{a-2\sqrt{a}+1+2a-4\sqrt{a}-4+2a+2\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5a-4\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5a-5\sqrt{a}+\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5\sqrt{a}\left(\sqrt{a}-1\right)+\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(5\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{5\sqrt{a}+1}{a+\sqrt{a}+1}\)

b) Để P=1 thì \(5\sqrt{a}+1=a+\sqrt{a}+1\)

\(\Leftrightarrow a+\sqrt{a}+1-5\sqrt{a}-1=0\)

\(\Leftrightarrow a-4\sqrt{a}=0\)

\(\Leftrightarrow\sqrt{a}\left(\sqrt{a}-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=0\\\sqrt{a}-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\left(nhận\right)\\a=16\left(nhận\right)\end{matrix}\right.\)

Vậy: Để P=1 thì \(a\in\left\{0;16\right\}\)

8 tháng 2 2021

a) DKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

P=\(\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\\ =\dfrac{\left(a-1\right)^2}{4a}.\left(\dfrac{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)

     = \(\dfrac{a-1}{4a}.\dfrac{-2.2\sqrt{a}}{1}\)

     = \(\dfrac{1-a}{\sqrt{a}}\)

b) P<0 với a ∈ DKXD

=> \(\dfrac{1-a}{\sqrt{a}}< 0\)

mà √a > 0 với ∀a ∈ DKXD

=> 1-a < 0

<=> a>1 ( thoả mãn DKXD)

Vậy để P<0 thì a>1.

c) Để P = 2 với a ∈ DKXD

=> \(\dfrac{1-a}{\sqrt{a}}=2\)

<=> 1-a = 2√a

<=> a + 2√a -1 = 0

<=> \(\left[{}\begin{matrix}\sqrt{a}=-1+\sqrt{2}\\\sqrt{a}=-1-\sqrt{2}\left(loại\right)\end{matrix}\right.\)

<=> a = \(\sqrt{\sqrt{2}-1}\)(thoả mãn DKXD)

Vậy để P =2 thì a = \(\sqrt{\sqrt{2}-1}\)

Sửa đề: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

a) Ta có: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{a}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)^2}{4a}\cdot\dfrac{-4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)\cdot\left(-1\right)}{\sqrt{a}}\)

\(=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)

\(=\dfrac{1-a}{\sqrt{a}}\)

b) Để P<0 thì \(\dfrac{1-a}{\sqrt{a}}< 0\)

mà \(\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên 1-a<0

hay a>1

Kết hợp ĐKXĐ, ta được: a>1

Vậy: Để P<0 thì a>1

c) Để P=2 thì \(\dfrac{1-a}{\sqrt{a}}=2\)

\(\Leftrightarrow1-a=2\sqrt{a}\)

\(\Leftrightarrow2\sqrt{a}+a-1=0\)

\(\Leftrightarrow a+2\sqrt{a}+1-2=0\)

\(\Leftrightarrow\left(\sqrt{a}+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+1=\sqrt{2}\\\sqrt{a}+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=\sqrt{2}-1\\\sqrt{a}=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\)

hay \(a=3-2\sqrt{2}\)(nhận)

Vậy: Để P=2 thì \(a=3-2\sqrt{2}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2\)

\(=\dfrac{x-2\sqrt{x}+1-\left(x+2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{4x}\)

\(=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{4x}\)

\(=\dfrac{-4\sqrt{x}\cdot\left(x-1\right)}{4x}\)

\(=\dfrac{-x+1}{\sqrt{x}}\)

b) Để P=2 thì \(-x+1=2\sqrt{x}\)

\(\Leftrightarrow-x+1-2\sqrt{x}=0\)

\(\Leftrightarrow x+2\sqrt{x}-1=0\)

\(\Leftrightarrow x+2\sqrt{x}+1-2=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=\sqrt{2}\\\sqrt{x}+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{2}-1\\\sqrt{x}=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\Leftrightarrow x=3-2\sqrt{2}\)

Vậy: Để P=2 thì \(x=3-2\sqrt{2}\)

a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{2}{3}\)

 

a) Ta có: \(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)

\(=\left(\dfrac{x+1}{x+1}+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{x+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{x-2\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1}{1}\cdot\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b) Để \(P=5\) thì \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}=5\)

\(\Leftrightarrow x+\sqrt{x}+1=5\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+\sqrt{x}+1=5\sqrt{x}-5\)

\(\Leftrightarrow x+\sqrt{x}+1-5\sqrt{x}+5=0\)

\(\Leftrightarrow x-4\sqrt{x}+6=0\)

\(\Leftrightarrow x-2\cdot\sqrt{x}\cdot2+4+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+2=0\)(Vô lý)

Vậy: Không có giá trị nào của x để P=5

26 tháng 8 2021

đk : \(x\ge0,x\ne1\)

\(=>P=\left[\dfrac{2\left(\sqrt{x}+2\right)-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]:\left[\dfrac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]\)

\(P=\left[\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right].\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\right]\)

\(P=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b,\(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\) thay vào P

\(=>P=\dfrac{2\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}=\dfrac{2\sqrt{5}-3}{\sqrt{5}}\)

c,\(=>\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}=>2x-\sqrt{x}=\sqrt{x}+1\)

\(=>2x-2\sqrt{x}-1=0< =>2\left(x-\sqrt{x}-\dfrac{1}{2}\right)=0\)

\(=>x-\sqrt{x}-\dfrac{1}{2}=>\Delta=1-4\left(-\dfrac{1}{2}\right)=3>0=>\left[{}\begin{matrix}x1=\dfrac{1+\sqrt{3}}{2}\\x2=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)

đối chiếu đk loại x2 còn x1 thỏa

 

 

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:
ĐK: $x\geq 0; x\neq 4; x\neq 9$

\(P=\frac{1}{\sqrt{x}+1}:\left[\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}\right]\)

\(=\frac{1}{\sqrt{x}+1}:\frac{x-9-(x-4)+\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

Để $P>0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+1}>0$

$\Leftrightarrow \sqrt{x}-2>0$ (do $\sqrt{x}+1>0$)

$\Leftrightarrow x>4$

Kết hợp với ĐKXĐ suy ra $x>4; x\neq 9$

12 tháng 5 2021

a, \(P=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(P=\left(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(P=\dfrac{1}{\sqrt{x}+1}:\left[\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right]\)

\(P=\dfrac{1}{\sqrt{x}+1}:\left[\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(P=\dfrac{1}{\sqrt{x}+1}:\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(P=\dfrac{1}{\sqrt{x}+1}.\sqrt{x}-2=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

21 tháng 9 2021

a) \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\left(đk:a>0,x\ne1\right)\)

\(=\dfrac{a-1}{2\sqrt{a}}.\dfrac{\left(a-\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+1\right)}{a-1}\)

\(=\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{2\sqrt{a}}\)

\(=\dfrac{-4a}{2\sqrt{a}}=-2\sqrt{a}\)

b) \(A=-2\sqrt{a}>-6\)

\(\Leftrightarrow\sqrt{a}< 3\Leftrightarrow0\le a< 9\) và \(a\ne1\)

c) \(a^2-3=0\Leftrightarrow a^2=3\Leftrightarrow\sqrt{a}=\sqrt[4]{3}\)

\(\Rightarrow A=-2\sqrt{a}=-2\sqrt[4]{3}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2x-\sqrt{x}+2\sqrt{x}+2\)

\(=2-x\)

b) Để P=3 thì 2-x=3

hay x=-1(Không thỏa mãn ĐKXĐ)

Vậy: Không có giá trị nào của x để P=3

c) Thay \(x=7+2\sqrt{3}\) vào P, ta được:

\(P=2-7-2\sqrt{3}=-5-2\sqrt{3}\)

Vậy: Khi \(x=7+2\sqrt{3}\) thì \(P=-5-2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)