Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
a)Ta có :
\(n^3-13n\) = \(n^3-12n-n\)\(=n\left(n^2-1\right)-12n\)\(=n.\left(n-1\right)\left(n+1\right)-6.2n\)
* n ; n-1 và n+1 là 3 số nguyên liên tiếp nên n.(n-1)(n+1) chia hết cho 6 vs 6.2n cũng chia hết cho 6
\(\Rightarrow\) n\(^3\)-13n chia hết cho 6
b)Ta có :A=n\(^5\)−5n\(^3\)+4\(n\)=n(n\(^4\)−5n\(^2\)+4)=n[n\(^2\)(n\(^2\)−1)−4(n\(^2\)−1)]=n(n\(^2\)−1)(n\(^2\)−4)=(n−2)(n−1)n(n+1)(n+2)
Vì (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 5 (1)
(n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3 (2)
(n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 2 số chẵn liên tiếp nên chia hết cho 8 (3)
Mà (3;5;8) =1 (4)
Từ (1) , (2) , (3) , (4) => A⋮(3.5.8)
=> A⋮120
c) Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm).
1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao
Ta có:
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3 ; 5 và 8. Mà 3.5.8 = 120.
=> \(n^5-5n^3+4n⋮120\)
Vậy ...
Ta có: \(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\) \(=n\left(n^4-n^2-4n^2+4\right)\) \(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\) \(=n\left(n^2-1\right)\left(n^2-4\right)\) \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3 ; 5 và 8. Mà 3.5.8 = 120. => \(n^5-5n^3+4n⋮120\) Vậy ...
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5.
Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)
Ta có:
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(n-2;n-1;;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp chia hết cho 3;5;8
Mà ƯC\(_{\left(3;5;8\right)}\)=1
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) chia hết cho:
3.5.8=120(đpcm)