Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{9}-\frac{1}{10}\)
\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(\frac{2}{5}x=\frac{9}{10}-\frac{3}{10}=\frac{3}{5}\)
\(x=\frac{\frac{3}{5}}{\frac{2}{5}}=\frac{3}{2}\)
Ta có: \(\frac{1}{1x2}\)+ \(\frac{1}{2x3}\)+ \(\frac{1}{3x4}\)+ \(\frac{1}{4x5}\)+ .....+ \(\frac{1}{9x10}\)
= \(1-\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
= 1 - \(\frac{1}{10}\)
= \(\frac{9}{10}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\)
= 1/2 .( 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + .......+ 1/2014.2015 - 1/2015.2016)
= 1/2 ( 1/2 - 1/2015.2016)
Tính tiếp p nhé.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\) \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
= 1 / 1 - 1 / 2 + 1 / 2 - 1 / 3 + 1 / 3 - 1 / 4 + 1 / 4 - 1 / 5 + 1 / 5 - 1 / 6
Ta gạch các ps trùng.
Còn lại :
1 / 1 - 1 / 6 = 6 / 5
\(A=\frac{1^2}{1\times2}\times\frac{2^2}{2\times3}\times\frac{3^2}{3\times4}\times\frac{4^2}{4\times5}\)
\(=\frac{1}{2}\times\frac{4}{6}\times\frac{9}{12}\times\frac{16}{20}\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)
Gạch các số giống nhau của phép nhân đó là 2; 3; 4. Ta được kết quả bằng
\(=\frac{1}{5}\)
\(\frac{3}{1^2x2^2}\)+\(\frac{5}{2^2x3^2}\)+...+\(\frac{39}{19^2x20^2}\)<1
=\(\frac{3}{1.4}\)+\(\frac{5}{4x9}\)+...+\(\frac{39}{361x400}\)<1
=1-\(\frac{1}{4}\)+\(\frac{1}{4}\)-...-\(\frac{1}{361}\)+\(\frac{1}{361}\)-\(\frac{1}{400}\)<1
vì 1-\(\frac{1}{400}\)<1 nên \(\frac{3}{1^2x2^2}\)+\(\frac{5}{2^2x3^2}\)+...+\(\frac{39}{39^2x40^2}\)<1
vậy..............................................