Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
52n+1.2n+2+3n+2.22n+1=52n.5.2n.22+3n.32.22n.2
=(25n.2n)(5.4)+(3n.4n)(9.2)=50n.20+12n.18
50 đồng dư với 12 (mod 38)
=>50n đồng dư với 12n (mod 38)
12 đồng dư với 12 (mod 38)
=>12n đồng dư với 12n (mod 38)
=>50n.20+12n.18 đồng dư với 12n.20+12n.18=12n.38 đồng dư với 0(mod 38)
=>52n+1.2n+2+3n+2.22n+1 chia hết cho 38
=>đpcm
Ta có:
\(1^2+2^2+3^2+...+n^2=1.1+2.2+3.3+...+n.n\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+n\left(n+1-1\right)\)
\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n\)
\(=\left(1.2+2.3+3.4+...+n\left(n+1\right)\right)-\left(1+2+3+...+n\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}\)
=...
\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)
2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)
3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)
Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))
Lời giải 1 :
Xét trường hợp n chẵn :
12 + 22 + 32 + … + n2 = (12 + 32 + 52 + … + (n – 1)2) + (22 + 42 + 62 + … + n2)
= [(n – 1).n.(n + 1) + n.(n + 1).(n + 2)]/6
= n.(n + 1).(n -1 + n + 2)/6 = n.(n + 1).(2n + 1)/6
Tương tự với trường hợp n lẻ, ta có
12 + 22 + 32 + … + n2 = (12 + 32 + 52 + … + n 2) + (22 + 42 + 62 + … + (n – 1)2)
= n(n + 1)(n + 2)/6 + (n – 1)n(n + 1)/6
= n(n + 1)(n + 2 + n – 1)/6
= n(n + 1)( 2n + 1) /6 ( ®pcm)
Lêi gi¶i 2 :
S = 1² + 2² + 3² + 4² +…+ n²
S = 1.1 + 2.2 + 3.3 +4.4 + … + n.n = 1.(2-1) + 2(3-1) + 3(4-1) + 4(5-1) + …n[(n+1)-1]
= 1.2 – 1+ 2.3 – 2 + 3.4 – 3 + 4.5 – 4 +…+ n(n + 1 ) – n
= 1.2 + 2.3 + 3.4 + 4.5 + …+ n( n + 1 ) – ( 1 + 2 + 3 +4 + … + n )
= - = n( n + 1 ). ) = n( n + 1)
Vậy S =