Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a_)3n+2 - 2n+2 +3n - 2n
=(3n+2+3n)+(-2n+2-2n)
=(3n.32+3n.1)+(-2n.22-2n+1)
=3n.(9+1)-2n.(4+1)
=3n.10-2n.5
ta có 3n.10 chia hết cho 10 và 2n.5 chia hết cho 10( vì có thừa số 2 và 5)
=> 3n+2 - 2n+2 +3n - 2n chia hết cho 10.
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
\(3^{n+2}-2^{n+4}+3^n+2^n\)
= \(\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)\)
= \(\left(3^n.3^2+3^n\right)-\left(2^n.2^4-2^n\right)\)
= \(3^n.\left(3^2+1\right)-2^n.\left(2^4-1\right)\)
= \(3^n.10-2^n.15\)
=\(3^n.2.5-2^n.3.5\)
=\(5.\left(3^n.2-2^n.3\right)\)
=\(5.\left(3^{n-1}.6-2^{n-1}.6\right)\)
=\(5.6.\left(3^{n-1}-2^{n-1}\right)\)
=\(30.\left(3^{n-1}-2^{n-1}\right)\)
=>\(3^{n+2}-2^{n+4}+3^n+2^n\)chia hết cho 30 với mọi số nguyên dương n
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
- a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.
mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
- vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
- tích của 3 số nguyên liên tiếp chia hết cho 3.
- tích của 5 số nguyên liên tiếp chia hết cho 5.
vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
- (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
- 12a chia hết cho 6.
vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow(60n+5)-(60n+4)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số tự nhiên n
Câu b tự làm
\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)
3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n+1(9 + 1 ) + 2n+3 + 2n+2 chia hết 2
3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n+1 + 3n+3 + 2n+2 ( 2+1 ) chia hết 3
Vì 3^m+5^n chia hết cho 8, 8^n+8^m chia hết cho 8
=>(8^m+8^n) - (3^m+5^n) chia hết cho 8
=>3^n+5^m chia hết cho 8
Giả sử m,n đều là số chẵn .
Đặt n = 2a , m = 2b ( a,b thuộc Z+ ; a,b 》1 )
=> 3^m = 3^2b = 9^b đd 1 ( mod 8 ) ; 5^n = 5^2a = 25^a đd 1 ( mod 8 )
=> 3^m + 5^n đd 2 ( mod 8 ) ( trái với giả thiết )
=> Điều giả sử sai
=> m,n không cùng là số chẵn
Tương tự : Nếu trong 2 số m,n có 1 số chẵn , 1 số lẻ không thỏa mãn giả thiết
=> Cả m,n đều là số lẻ
Xét tổng 3^m + 5^n + 3^n + 5^m = ( 3^m + 5^m ) + ( 3^n + 5^n )
= ( 3 + 5 ).( 3^m-1 - 3^m-2.5 + ... + 5^m-1 ) + ( 3 + 5 ).( 3^n-1 - ... + 5^n-1 ) ( Vì m,n đều là số lẻ )
= 8.M + 8.N chia hết cho 8
Mà 3^m + 5^n chia hết cho 8 ( giả thiết )
=> 3^n + 5^m chia hết cho 8 ( đpcm )
Vậy 3^n + 5^m chia hết cho 8 .
n \(\in\) N* suy ra :
Trường hợp 1: n là số chẵn => n=2k. Ta có:
32k+3+32k+2+22k+3+22k+2 = 32.3k+3+32.3k+2+22.2k+2 = 3.(3+1+3+1)+3k+3k+2.(1+2+1)+2k
chia hết cho 6.
Trường hợp 2; b là số lẻ => n=2k+1. Ta có: (tương tự)