\(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

a)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=1\)\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=1\)

\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=1\)

\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=1\)

\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=1\)

\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

\(\Leftrightarrow\sqrt{1}=1\) (đpcm)

16 tháng 5 2018

- cảm ơn ạ

14 tháng 11 2018

Đề không khó, mỗi tội dài

14 tháng 11 2018

vậy thì bn làm hộ mik vs , mik cần gấp

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)

c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)

\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không

28 tháng 4 2018

a. \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

= \(\sqrt{3-2\sqrt{15}+5}-\sqrt{3+2\sqrt{15}+5}\)

= \(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\)

= \(\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}\)

= \(-2\sqrt{3}\)

b. \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)

= \(\dfrac{\left(\sqrt{15}-\sqrt{5}\right).\left(\sqrt{3}+1\right)}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(2\sqrt{5}+4\right)}{4}\)

=\(\dfrac{\sqrt{45}+\sqrt{15}-\sqrt{15}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).2\left(\sqrt{5}+2\right)}{4}\)

= \(\dfrac{3\sqrt{5}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(\sqrt{5}+2\right)}{2}\)

= \(\dfrac{2\sqrt{5}}{2}+\dfrac{5\sqrt{5}+10-10-4\sqrt{5}}{2}\)

= \(\sqrt{5}+\dfrac{\sqrt{5}}{2}\)

= \(\dfrac{3\sqrt{5}}{2}\)

c. \(\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}+\dfrac{1}{\sqrt{5}+\sqrt{2}}\right):\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)

= \(\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right).\left(\sqrt{5}+\sqrt{2}\right)}.\left(\sqrt{2}+1\right)^2\)

= \(\dfrac{2\sqrt{5}}{3}.\left(2+2\sqrt{2}+1\right)\)

= \(\dfrac{2\sqrt{5}}{3}.\left(3+2\sqrt{2}\right)\)

= \(\dfrac{6\sqrt{5}+4\sqrt{10}}{3}\)

d. \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right).\dfrac{1}{\sqrt{3}+5}\)

= \(\left(\sqrt{3}+1-3\left(\sqrt{3}+2\right)+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right).\dfrac{1}{\sqrt{3}+5}\)

= \(\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)

= \(\left(-2\sqrt{3}-5+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)

= \(\dfrac{-4\sqrt{3}-10+15+5\sqrt{3}}{2}.\dfrac{1}{\sqrt{3}+5}\)

= \(\dfrac{\sqrt{3}+5}{2}.\dfrac{1}{\sqrt{3}+5}\)

= \(\dfrac{1}{2}\)

Nếu đúng cho 1 like nhé!

a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)

b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)

\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)

\(=-60-144\sqrt{2}+30\sqrt{2}+144\)

\(=84-114\sqrt{2}\)

Ta có: \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+\sqrt{2}}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)\left(\sqrt{6}+1\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{\sqrt{2}\left(3\sqrt{6}+3+\sqrt{30}+\sqrt{5}\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{6\sqrt{3}+3\sqrt{2}+2\sqrt{15}+\sqrt{10}-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{6\sqrt{3}+3\sqrt{2}+\sqrt{15}+\sqrt{10}-\sqrt{5}}{ }\)

Đề sai rồi bạn

Ta có: \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)

\(=\dfrac{\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{\sqrt{20}-2}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)

\(=\dfrac{\left(6+2\sqrt{5}\right)\left(\sqrt{5}-1\right)}{2\left(\sqrt{5}-1\right)}-\dfrac{\sqrt{5}}{2}\)

\(=\dfrac{6+2\sqrt{5}-\sqrt{5}}{2}\)

\(=\dfrac{6-\sqrt{5}}{2}\)