K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 11 2021

K, H là trung điểm AD và BC nên KH là đường trung bình của hình thang

\(\Rightarrow KH=\dfrac{AB+CD}{2}\)

\(\Rightarrow AB=2KH-CD=2.4-5=3\left(cm\right)\)

22 tháng 7 2017

xét hthang ABCD có :E là trung điểm của AD và F là t/đ của BC => EF là đg trung bình của hthang ABCD=>EF=(AB+CD)/2

                                                                                                                                                                       =>2EF=AB+CD  (1)

+) chu vi hthang ABCD= AB +CD+AD+BC=AB +CD+2ED+2FC(vì E là t/đ của AD,F là t/đ của BC)    (2)

 thay (1) vào (2) ta đc: CV hthang ABCD=2(EF+DE+FC)=2.5=10cm(vì È+DE+FC=5cm)

Kẻ BH//AD(H∈CD)BH//AD(H∈CD), kẻ BD

Ta có:

+) AB//CD (hình thang ABCD)

⇒B2ˆ=D1ˆ⇒B2^=D1^ ( 2 góc so le trong )

+) BH//AD (cách vẽ)

⇒D2ˆ=B1ˆ⇒D2^=B1^ ( 2 góc so le trong)

Xét ΔDABΔDAB và ΔBHDΔBHD, ta có:

B2ˆ=D1ˆ(cmt)B2^=D1^(cmt)

BD : chung

D2ˆ=B1ˆ(cmt)D2^=B1^(cmt)

⇒⇒ ΔDABΔDAB = ΔBHDΔBHD (gcg)

⇒AD=BH⇒AD=BH

mà AD=3cm(gt)AD=3cm(gt)

⇒BH=3cm⇒BH=3cm

+) ΔDABΔDAB = ΔBHDΔBHD (cmt)

⇒AB=DH⇒AB=DH

mà AB=4cm(gt)AB=4cm(gt)

⇒DH=4cm⇒DH=4cm

+) DH+HC=DC(H∈DC)DH+HC=DC(H∈DC)

⇒4+HC=8⇒4+HC=8

⇒HC=4cm⇒HC=4cm

Xét ΔBHC,ΔBHC, ta có:

52=32+4252=32+42

⇒BC2=BH2+HC2⇒BC2=BH2+HC2 (Định lý Py-ta-go)

⇒ΔBHC⇒ΔBHC vuông tại H

⇒H1ˆ=900⇒H1^=900

+) AD//BH

⇒ADHˆ=H1ˆ⇒ADH^=H1^ (2 góc động vị)

⇒ADHˆ=900⇒ADH^=900

⇒⇒ Hình thang ABCD là hình thang vuông

Bạn ơi 900 là 90 độ nha

15 tháng 1 2015

Mình nghĩ rằng bạn bị nhầm đề. Nếu là cạnh AC = 8cm ( có như thế thì mới tìm được liên hệ về độ dài các cạnh là bội số của tam giác vuông) => kq =24 cm2. Cách giải sẽ là: Gọi I, K tương ứng là trung điểm của AD, BC. Lúc đó MIN, MKN là 2 tam giác vuông tại I, K. MINK là hcn. SABCD = 2SMINK= 4SMIN= 24 cm2.
 

16 tháng 10 2018

Bạn lầu trên ơi, 2 đường chéo có vuông góc vs nhau đâu mà ta có 2 tam giác vuông đó nhỉ.

6 tháng 5 2018

Chọn A