Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
\(A=5x^2+7y^2-3xy\)
\(+\)
\(B=6x^2+9y^2-8xy\)
\(P=11x^2+16y^2-11xy\)
\(A=5x^2+7y^2-3xy\)
\(-\)
\(B=6x^2+9y^2-8xy\)
\(Q=-x^2-2y^2+5xy\)
Bài 1 Tớ giải từng bài nhé ! Ko có ý đồ câu điểm.
\(A=4x^2-5xy+xy^2\)
\(B=3x^2+2xy-xy^2\)
Ta có : \(A+B=4x^2-5xy+xy^2+3x^2+2xy-xy^2\)
\(=7x^2-3xy\)
\(A-B=4x^2-5xy+xy^2-3x^2-2xy+xy^2\)
\(=x^2-7xy+2xy^2\)
Bài 2 : N ở đâu ?
Ta có : \(M+\left(5x^2-2xy\right)=xy^2+xy^3-y^2\)
\(M=xy^2+xy^3-y^2-5x^2+2xy\)
Bài 3 :
\(A=x^2y-xy^2+xy^2=x^2y\)
\(B=xy+4xy^2-2x-1\)
Ta có :
M + N = 6x2 + 3xy - 2y2 + ( 3y2 - 2x2 - 3xy )
= 6x2 + 3xy - 2y2 + 3y2 - 2x2 - 3xy
= 4x2 + y2 ( đoạn này mình làm hơi tắt sry nha)
Do 4x2 + y2 \(\ge\)0
Suy ra : M + N \(\ge\) 0 <=> M và N \(\ge\)0
Do đó không tồn tại giá trị nào của x để 2 đa thức M và N có cùng giá trị âm
Đặt \(X=M+N=4x^2+y^2\)
Vì \(4x^2\ge0\forall x\)
\(y^2\ge0\forall x\)
\(X\ge0\forall x\)
Vậy...
a, \(M=P-Q=11x^2-11xy+16y^2+x^2-5xy+2y^2\)
\(=12x^2-16xy+18y^2\)
Thay x = -1, y = -2 ta có:
\(M=P-Q=12.\left(-1\right)^2-16\left(-1\right)\left(-2\right)+18\left(-2\right)^2\)
\(=12-32+72\)
\(=52\)
Vậy M = 52
b, \(T=M-N=12x^2-16xy+18y^2-3x^2+16xy-14y^2\)
\(=9x^2+4y^2\)
Mà \(\left\{{}\begin{matrix}9x^2\ge0\\4y^2\ge0\end{matrix}\right.\Rightarrow T=9x^2+4y^2\ge0\forall x,y\)
Vậy T không nhận giá trị âm \(\forall x,y\)
Bài 1 :
\(M+N=3x^2-4xy-6y^2+1+2x^2-4xy+6y^2-1\)
\(=\left(3x^2+2x^2\right)-\left(4xy+4xy\right)+\left(6y^2-6y^2\right)+1-1\)
\(=5x^2-8xy\)
\(M-N=3x^2-4xy-6y^2+1-\left(2x^2-4xy+6y^2-1\right)\)
\(=3x^2-4xy-6y^2+1-2x^2+4xy-6y^2+1\)
\(=\left(3x^2-2x^2\right)-\left(4xy-4xy\right)-\left(6y^2+6y^2\right)+2\)
\(=x^2-12y^2+2\)
Bài 2 :
\(\left(1-2x\right)\left(5-3x\right)-\left(6x+5\right)\left(x-4\right)\)
\(=5-3x-10x+6x^2-6x^2+24x-5x+20\)
\(=\left(6x^2-6x^2\right)+\left(24x-3x-5x-10x\right)+25\)
\(=8x+25\)
Bài 3 :
\(x+y=2\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow20+2xy=4\Rightarrow2xy=-16\Rightarrow xy=-8\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=2\left(20-\left(-8\right)\right)=40+16=56\)
Bài 4 :
\(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1}\)( luôn dương )
\(\Rightarrow\)Biểu thức luôn dương \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)