K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

\(A\in d\Rightarrow A\left(-2+t;-1+3t\right)\)

\(AB=\sqrt{10}\Leftrightarrow\sqrt{\left(-2+t-2\right)^2+\left(-1+3t-1\right)^2}=\sqrt{10}\)

\(\Leftrightarrow\left(t-4\right)^2+\left(3t-2\right)^2=10\\ \Leftrightarrow t^2-8t+16+9t^2-12t+4=10\\ \Leftrightarrow10t^2-20t+20=10\\ \Leftrightarrow t^2-2t+1=0\Leftrightarrow\left(t-1\right)^2=0\Leftrightarrow t=1\)

\(\Rightarrow A\left(-1;2\right)\).

9 tháng 5 2020

Hiện tại là characters và symbols của mình ko bấm được bạn ạ, máy tính mình hư mang đi sửa rồi, gợi ý thôi nhé :))

Câu a đơn giản thôi, bạn viết véctơ AB ra, nghĩa là lúc này, đường thẳng đi qua 2 điểm AB có véctơ chủ phương là AB, bạn viết véctơ pháp tuyến ra là được, rồi chọn 1 trong 2 điểm A,B làm x0,y0 là ok rồi :))

Còn câu b, trước hết là bạn phải viết ptđt của delta đã, trong sgk có instructions đó :)

Rồi sau đó, như mình đã nói với bạn hồi chiều, 2 đt song song thì có chung véctơ pháp tuyến, giờ bài toán chỉ cong là: viết ptđt đi qua điểm A và có véctơ pháp tuyến là...

Đơn giản thôi hà :D

NV
20 tháng 2 2020

Chuyển pt d về dạng tổng quát: \(3x+y-7=0\)

Thay tọa độ điểm A vào: \(\Rightarrow3.1+2-7=-1< 0\)

Thay tọa độ điểm B vào, để 2 điểm nằm cùng phía so với d thì:

\(-6+m-7< 0\Rightarrow m< 13\)

28 tháng 3 2019

\(M\in d\Rightarrow M\left(1-2t;t\right)\)

\(\overrightarrow{AM}=\left(1-2t;t-1\right)\)

Ta có: \(AM=\sqrt{10}\Leftrightarrow AM^2=10\\ \Leftrightarrow\left(1-2t\right)^2+\left(t-1\right)^2=10\Leftrightarrow5t^2-6t-8=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=\frac{-4}{5}\end{matrix}\right. \)

\(t=2\Rightarrow M\left(-3;2\right)\\ t=\frac{-4}{5}\Rightarrow M\left(\frac{13}{5};\frac{-4}{5}\right)\)

28 tháng 4 2020

a/ \(\overrightarrow{u}=\left(-4;3\right)\Rightarrow\overrightarrow{n}=\left(3;4\right)\)

\(\Rightarrow\left(d\right):3\left(x-1\right)+4\left(y-2\right)=0\)

\(\left(d\right):3x+4y-11=0\)

b/ \(\left(x_O-x_M;y_O-y_M\right)=\left(4;-5\right)\)

Ủa đề bài kiểu gì vậy? Thế này là tìm được M rồi mà, cho M thuộc (d) làm gì? :<

21 tháng 3 2017

\(M\in d\Rightarrow M\left(3-2t;1+3t\right)\)

\(\Rightarrow\)\(\overrightarrow{AM}=\left(-1-2t;1+3t\right)\)

\(\Rightarrow AM=\sqrt{\left(-1-2t\right)^2+\left(1+3t\right)^2}=5\)

\(\Leftrightarrow13t^2+10t-23=0\Rightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{-23}{13}\end{matrix}\right.\)

\(+t=1\Rightarrow M\left(1;4\right)\)

\(+t=\dfrac{-23}{13}\Rightarrow M=\left(\dfrac{85}{13};\dfrac{-56}{13}\right)\)

vậy có 2 điểm M cần tìm.

13 tháng 3 2019

a. Md1= (2;1)

Md2 = (-1;3)

b. Gọi d là đường thẳng đi qua M

- Viết PTTS của d ⊥ d1:

Ta có:

M(2;1)

Do d1⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

--> VTCP ud = (3;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=2+3t\\y=1+t\end{matrix}\right.\)

- Viết PTTQ của d ⊥ d1:

Ta có:

M(2;1)

Do d1 ⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

Vậy PTTQ của d:

-1(x - 2) + 3(y - 1) = 0

<=> -x + 2 + 3y - 3 = 0

<=> -x + 3y - 1 = 0

- Viết PTTS của d ⊥ d2:

Ta có:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

--> VTCP ud = (2;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=-1+2t\\y=3+t\end{matrix}\right.\)

Viết PTTQ của d ⊥ d2:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

Vậy PTTQ của d:

-1(x + 1) + 2(y - 3) = 0

<=> -x - 1 + 2y - 6 = 0

<=> -x + 2y - 7 = 0

NV
25 tháng 4 2020

Đường thẳng d đi qua điểm \(\left(1;2\right)\) và nhận \(\left(2;-3\right)\) là 1 vtcp nên nhận \(\left(3;2\right)\) là 1 vtpt

Phương trình tổng quát:

\(3\left(x-1\right)+2\left(y-2\right)=0\Leftrightarrow3x+2y-7=0\)