K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Giả sử rằng cả A, B, C đều âm. Như vậy thì A+B+C<0

\(\Leftrightarrow5x^2+6xy-7y^2-9x^2-8xy+11y^2+6x^2+2xy-3y^2< 0\)

\(\Leftrightarrow2x^2+y^2< 0\)là điều vô lý (vì cả 2 số hạng đều không âm)

Do đó A, B, C không thể cùng có giá trị âm.

12 tháng 5 2018

Ta có \(A+B+C=\left(5x^2+6xy-7y^2\right)+\left(-9x^2-8xy+11y^2\right)+\left(6x^2+2xy-3y^2\right)\)

=> \(A+B+C=\left(5x^2+6x^2-9x^2\right)+\left(6xy+2xy-8xy\right)+\left(11y^2-3y^2-7y^2\right)\)

=> \(A+B+C=2x^2+y^2\)

Mà \(2x^2\ge0\)và \(y^2\ge0\)

=> \(A+B+C=2x^2+y^2\ge0\)

=> A, B, C không thể có cùng giá trị âm (đpcm)

23 tháng 8 2018

\(A+B+C=\left(5x^2+6xy-7y^2\right)+\left(-9x^2-8xy+11y^2\right)+\left(6x^2+2xy-3y^2\right)\\ =\left(5x^2-9x^2+6x^2\right)+\left(6xy-8xy+2xy\right)+\left(-7y^2+11y^2-3y^2\right)\\ =2x^2+y^2\)

Ta có :

\(2x^2+y^2\ge0\forall x;y\\ \Rightarrow\left[{}\begin{matrix}A< 0\\B< 0\\C< 0\end{matrix}\right.\\ \RightarrowĐpcm\)

Giải thử thôi, chắc là sai á!!

26 tháng 3 2018

a, P = A + B = (5x\(^2\) - 3xy + 7y\(^2\)) + (6x\(^2\) - 8xy + 9y\(^2\))

= 5x\(^2\) - 3xy + 7y\(^2\) + 6x\(^2\) - 8xy + 9y\(^2\)

= (5x\(^2\) + 6x\(^2\)) + (-3xy - 8xy) + (7y\(^2\) + 9y\(^2\))

= 11x\(^2\) - 11xy + 16y\(^2\)

Q = A - B = (5x\(^2\) - 3xy + 7y\(^2\)) - (6x\(^2\) - 8xy + 9y\(^2\))

= 5x\(^2\) - 3xy + 7y\(^2\) - 6x\(^2\) + 8xy - 9y\(^2\)

= (5x\(^2\) - 6x\(^2\)) + (-3xy + 8xy) + (7y\(^2\) - 9y\(^2\)) = -x\(^2\) + 5xy - 2y\(^2\)

b, M = P - Q = (11x\(^2\) - 11xy + 16y\(^2\)) - (-x \(^2\)+ 5xy - 2y\(^2\))

= 11x\(^2\) - 11xy + 16y\(^2\) + x\(^2\) - 5xy + 2y\(^2\)

= (11x\(^2\) + x\(^2\)) + (-11xy - 5xy) + (16y\(^2\) + 2y\(^2\))

= 12x\(^2\) - 16xy + 18y\(^2\)

Thay x = 1 , y = 2 vào biểu thức M

Ta có : M = 12x\(^2\) - 16xy + 18y\(^2\)

= 12 . 1\(^2\) - 16 . 1 . 2 + 18 .2\(^2\)

= 12 - 32 + 72

= 52

1 tháng 4 2018

Cộng, trừ đa thức

21 tháng 5 2018

1, Ta có :

\(A+B+C=\left(5x^2+6xy-7y^2\right)+\left(-9x^2-8xy+11y^2\right)+\left(6x^2+2xy-3y^2\right)\\ =\left(5x^2-9x^2+6x^2\right)+\left(6xy-8xy+2xy\right)+\left(-7y^2+11y^2-3y^2\right)\\ =2x^2+y^2\)

\(2x^2+y^2\ge0\forall x;y\)

\(\Rightarrow A+B+C\ge0\\ \RightarrowĐpcm\)

2, Đề bài không đủ.

3, Theo bài ra có :

\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Ta có :

\(ab+2ab+3ca=3ab+3ca=3a\left(b+c\right)\\ Màb+c=-a\\ \Rightarrow ab+2ab+3ca=3a\cdot-a=-3\cdot a^2\)

Nếu a = 0 thì \(ab+2ab+3ca=0\)

Nếu a < 0 hoặc a > 0 thì \(ab+2ab+3ca\ge0\)

\(\RightarrowĐpcm\)