K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)

\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)

\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)

\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)

\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)

\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)

\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)

\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)

...................................................................................................................

8 tháng 4 2018

cũng bằng 3

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

 

 

2 tháng 4 2016

\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\left(1\right)\)

\(x^3+y^3=1\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)=1\left(2\right)\)

Đặt : x +y =t  =>  \(t^3-\frac{3}{2}t\left(t^2-1\right)=1\Leftrightarrow-t^3+3t-2=0\Leftrightarrow t=1;t=-2\)

* x + y = 1 => xy = 0

** x +y = -2  => xy = 3/2

A = x4 + y4 = (x2+y2)2 - 2(xy) = 1 - 2 .(xy)2  

 Nếu xy =0 => A =1

Nếu xy =3/2 => A = 1 - 2. 9/4 = -7/2

2 tháng 4 2016

TH2 loại nhé.

21 tháng 8 2019

Trả lời

Từ giả thiết x+y+z=xyz <=> 1/xy + 1/yz + 1/zx = 1

Khi đó: x/1+x2 = \(\frac{1}{\frac{x}{\left(\frac{1}{z}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}}\)\(=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)

Tương tự cho 2 cái còn lại ta có:\(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)

\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)

Suy ra VT=\(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

ĐPCM

21 tháng 8 2019

 Ta có:\(\frac{x}{1+x^2}=\frac{xyz}{yz+x^2yz}=\frac{xyz}{yz+x\left(xyz\right)}=\frac{xyz}{yz+x\left(x+y+z\right)}=\frac{xyz}{yz+x^2+xy+xz}=\frac{xyz}{y\left(x+z\right)+x\left(x+z\right)}\)

\(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}\)

Chứng minh tương tự : \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(y+z\right)\left(y+x\right)}\)

                                        \(\frac{3z}{1+z^2}=\frac{3xyz}{\left(x+z\right)\left(x+y\right)}\)

Khi đó VT \(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}+\frac{2xyz}{\left(y+z\right)\left(y+x\right)}+\frac{3xyz}{\left(x+z\right)\left(z+y\right)}\)

\(=\frac{xyz\left[y+z+2\left(z+x\right)+3\left(x+y\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(đpcm\right)\)

( mình đang vội nên làm hơi tắt mong bạn thông cảm )