Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét:
5121 có chữ số tận cùng là 5. Đặt 5121 = \(\overline{A5}\)
3515 có chữ số tận cùng là 5. Đặt 3515 = \(\overline{B5}\)
Do đó \(5^{121}-35^{15}=\overline{A5}-\overline{B5}=\overline{C0}⋮10\left(đpcm\right)\)
b) Ta có:
\(\left(13-12\right)^{2015}=1^{2015}=1\)
\(5^{17}.5^{14}:5^{31}=5^0=1\)
Vậy \(\left(13-12\right)^{2015}=5^{17}.5^{14}:5^{31}\)
c) \(9+5x=4^7:4^3-3^4\)
\(\Leftrightarrow9+5x=4^4-3^4\)
\(\Leftrightarrow9+5x=256-81\)
\(\Leftrightarrow9+5x=175\)
\(\Leftrightarrow5x=175-9=166\)
\(\Rightarrow x=166:5=33\dfrac{1}{5}\)
Bài 1:
ta có 3^3 = 27 chia 13 dư 1
=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1)
5^2 = 25 chia 13 dư (-1)
=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2)
Từ (1); (2)
=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0
hay 3^2010+5^2010 chia hết cho 13.
bài 1:
Ta có
32010=(33)670≡1670(mod13)32010=(33)670≡1670(mod13)
Mà 52010=(52)1005≡(−1)1005(mod13)52010=(52)1005≡(−1)1005(mod13)
Từ đó suy ra 32010+5201032010+52010 chia hết cho 13
theo tớ số:79 mũ 15 -19 mũ 13 chia hết cho 2