K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

Bài 1 b ) n chia hết cho n => 4n chia hết cho n

=> 15-4n +4n chia hết cho n hay 15 chia hết cho n

=> n E Ư( 15) mà n < 4 => n = 1 ; 3

Các câu còn lại bạn làm tương tự nhé

18 tháng 10 2015

1a

ta thấy; (n+12) : n để (n+12):n

=>n:n & 12:n => n là chữ số ,n khác 0

=> n={1;2;6}

tớ chỉ biết câu này thôi

22 tháng 10 2015

a) ta có n+8=(n+3)+5 chia hết cho n+3

mà (n+3)chia hết cho n+3

=> 5 chia hết cho n+3

mà 5 chia hết cho 1;5

=> n+3 = 5 => n = 2

n+3 = 1 loại

KL n=2

 

 

25 tháng 10 2016

a) n + 3 chia hết cho n

Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n

Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }

b) 35 - 12n chia hết cho n ( n < 3 )

Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n

từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }

Mà n < 3 nên n = 1

Vậy n = 1

c) 16 - 3n chia hết cho n + 4 ( n < 6 )

theo bài ra ta có : 

16 - 3n chia hết cho n + 4

28 . ( 3n + 12 ) chia hết cho n + 4

28 - 3 . ( n + 4 ) chia hết cho n + 4

vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4

Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }

mà n < 6 nên n = { 1 ; 2 ; 4 }

vậy n = { 1 ; 2 ; 4 }

d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )

ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )

Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )

Từ ( 1 ) và ( 2 ) ta có :

5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n

=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n

45 + 4 chia hết cho 9 - 2n

49 chia hết cho 9 - 2n

để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n

Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }

Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }

\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)

19 tháng 5 2017

a) n + 3 chia hết cho n ( n thuộc N )

Ta có : n chia hết cho n

           n + 3 chia hết cho n

=> 3 chia hết cho n

=> n thuộc Ư ( 3 )

=> n thuộc { 1 ; 3 }

26 tháng 10 2016

a)n+3\(⋮\)n b)35-12n\(⋮\)n

n\(⋮\)n 12n\(⋮\)n

n+3-n\(⋮\)n 35-12n-12n\(⋮\)n

3\(⋮\)n 35\(⋮\)n

\(\Rightarrow\)n={1;3} vì n<3 nên :

\(\Rightarrow\)n={1}

Làm tượng tự với các câu sau

25 tháng 2 2017

Có n + 3 chia hết cho n

=> n chia hết cho n

=> 3 chia hết cho n

=> n thuộc Ư(3)

n = { 1 ; 3}

17 tháng 7 2018

a) \(\left(5n+7\right)\left(4n+6\right)\)

\(=\left(5n+7\right)4n+\left(5n+7\right)6\)

\(=20n^2+28n+30n+32\)

\(=20n^2+58n+32\)

\(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)

b) \(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right)6n+\left(8n+1\right)5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(\left(48n^2+46n\right)⋮2\)\(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)

c) \(n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(n-1+n-2\right)\)

\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\)\(n\left(n+1\right)\left(n+2\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n1213n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+94n16n+9⋮4n−1

2.(6n+9)4n1⇒2.(6n+9)⋮4n−1

12n+184n1⇒12n+18⋮4n−1

12n3+214n1⇒12n−3+21⋮4n−1

3.(4n1)+214n1⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n1)4n1214n13.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n114n−1≥−1 do nNn∈N

4n1{1;3;7}⇒4n−1∈{−1;3;7}

4n{0;4;8}⇒4n∈{0;4;8}

n{0;1;2}

16 tháng 7 2016

không trả lời