Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :Bỏ dấu ngoặc
2007-(7-3+4)
= 2007 -7+3-4
= 1999
6+[(-5) + 4 - 1 ]
= 6-5+4-1
=4
5-[(-6+8-2]
= 5+6-8+2
=5
-10+(7-3+1)
= -10 +7-3+1
= -5
Bài 3 Tìm x
\(\dfrac{1}{3} = \dfrac{x}{6}\)
\(<=> x= \dfrac{1.6}{3}\)
\(<=> x=2\)
a, \(\frac{3}{5}+\frac{-4}{15}=\frac{9}{15}-\frac{4}{15}=\frac{5}{15}=\frac{1}{3}\)
b, \(\frac{-1}{3}+\frac{2}{5}+\frac{2}{15}=\frac{-5}{15}+\frac{6}{15}+\frac{2}{15}=\frac{3}{15}=\frac{1}{5}\)
c, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}=\frac{-3}{5}+\frac{1}{3}+\frac{-4}{5}+\frac{7}{5}=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{1}{3}=\frac{1}{3}\)
d, \(\frac{2}{7}+\frac{1}{9}+\frac{3}{7}+\frac{5}{9}+\frac{-5}{6}=\left(\frac{2}{7}+\frac{3}{7}\right)+\left(\frac{1}{9}+\frac{5}{9}\right)+\frac{-5}{6}=\frac{5}{7}+\frac{6}{9}+\frac{-5}{6}=\frac{90}{126}+\frac{84}{126}+\frac{-105}{126}=\frac{69}{126}=\frac{23}{42}\)
e, \(\frac{-5}{7}+\frac{3}{4}+\frac{-1}{5}+\frac{-2}{7}+\frac{1}{4}=\left(\frac{-5}{7}+\frac{-2}{7}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{-1}{5}=\left(-1\right)+1+\frac{-1}{5}=\frac{-1}{5}\)
f, \(\frac{-3}{31}+\frac{-6}{17}+\frac{1}{25}+\frac{-28}{31}+\frac{-1}{17}+\frac{-1}{5}=\left(\frac{-3}{31}+\frac{-28}{31}\right)+\left(\frac{-6}{17}+\frac{-1}{17}\right)+\left(\frac{1}{25}+\frac{-1}{5}\right)=\left(-1\right)+\frac{-7}{17}+\frac{-4}{25}=\frac{-425}{425}+\frac{-175}{425}+\frac{-68}{425}=\frac{-668}{425}\)
Chúc bn học tốt
a 25 phần 41
b 9
c 1 phần 12
d 12
e 14 phần 15
f 24 phần 7
\(\frac{5}{6}=\frac{x-1}{x}\left(đk:x\ne0\right)\)
\(< =>5x=6\left(x-1\right)< =>5x=6x-6\)
\(< =>6x-5x=6< =>x=6\left(tmđk\right)\)
\(\frac{1}{2}=\frac{x+1}{3x}\left(đk:x\ne0\right)\)
\(< =>3x=2\left(x+1\right)< =>3x=2x+2\)
\(< =>3x-2x=2< =>x=2\left(tmđk\right)\)
\(\frac{3}{x+2}=\frac{5}{2x+1}\left(đk:x\ne-2;-\frac{1}{2}\right)\)
\(< =>3\left(2x+1\right)=5\left(x+2\right)< =>6x+3=5x+10\)
\(< =>6x-5x=10-3< =>x=7\left(tmđk\right)\)
\(\frac{5}{8x-2}=-\frac{4}{7-x}\left(đk:x\ne\frac{1}{4};7\right)\)
\(< =>\frac{5}{8x-2}=\frac{4}{x-7}< =>5\left(x-7\right)=4\left(8x-2\right)\)
\(< =>5x-35=32x-8< =>32x-5x=-35+8\)
\(< =>27x=-27< =>x=-1\)
\(\frac{4}{3}=\frac{2x-1}{3}< =>4.3=\left(2x-1\right).3\)
\(< =>12=6x-3< =>6x=12+3\)
\(< =>6x=15< =>x=\frac{15}{6}=\frac{5}{2}\)
\(\frac{2x-1}{3}=\frac{3x+1}{4}< =>4\left(2x-1\right)=3\left(3x+1\right)\)
\(< =>8x-4=9x+3< =>9x-8x=-4-3\)
\(< =>9x-8x=-7< =>x=-7\)
\(\frac{4}{x+2}=\frac{7}{3x+1}\left(đk:x\ne-2;-\frac{1}{3}\right)\)
\(< =>4\left(3x+1\right)=7\left(x+2\right)< =>12x+4=7x+14\)
\(< =>12x-7x=14-4< =>5x=10\)
\(< =>x=\frac{10}{5}=2\left(tmđk\right)\)
\(-\frac{3}{x+1}=\frac{4}{2-2x}\left(đk:x\ne-1;1\right)\)
\(< =>-3\left(2-2x\right)=4\left(x+1\right)< =>-6+6x=4x+4\)
\(< =>6x-4x=4+6< =>2x=10\)
\(< =>x=\frac{10}{2}=5\left(tmđk\right)\)
\(\frac{x+1}{3}=\frac{3}{x+1}\left(đk:x\ne-1\right)\)
\(< =>\left(x+1\right)\left(x+1\right)=3.3\)
\(< =>x^2+2x+1=9< =>x^2+2x+1-9=0\)
\(< =>x^2+2x-8=0< =>x^2-2x+4x-8=0\)
\(< =>x\left(x-2\right)+4\left(x-2\right)=0< =>\left(x+4\right)\left(x-2\right)=0\)
\(< =>\orbr{\begin{cases}x+4=0\\x-2=0\end{cases}< =>\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\left(tmđk\right)\)
\(\dfrac{-6}{7-x}=\dfrac{1}{5}-\dfrac{-4}{5}\Rightarrow\dfrac{-6}{7-x}=1\)
\(\Rightarrow7-x=-6\Rightarrow x=13\)