K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2021

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

16 tháng 5 2021

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)

15 tháng 2 2020
https://i.imgur.com/zKeoHqB.jpg
25 tháng 3 2020

Định làm mà mệt quá

20 tháng 7 2017

câu a x = 7

Câu b x = -0,5

k nha

20 tháng 7 2017

\(\text{a , (x-3).(x^2+3x+9)+x(x+2).(2-x)=1 }\)

=(x3-33)+x(4-x2)=1

=x3-27+4x-x3=1

4x-27=1

4x=28

x=7

\(\text{b, (x+1)^3-(x-1)^3-6.(x-1)^2=-10}\)

=-0,5

23 tháng 12 2016

a ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(\Leftrightarrow x^2-4x+4-x^2+9=6\)

\(\Leftrightarrow-4x+13=6\)

\(\Leftrightarrow-4x=-7\)

\(\Leftrightarrow x=\frac{7}{4}\)

Vậy \(x=1\).

b ) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)

\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)

\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)

\(\Leftrightarrow-24x+37=10\)

\(\Leftrightarrow-24x=27\)

\(\Leftrightarrow x=\frac{9}{8}.\)

Mấy pài kia tương tự . :D

 

23 tháng 12 2016

cậu khai triển các tích ra là ra thui mà cậu

Bài 1: 

8: \(=\dfrac{x+3}{x\left(x-3\right)}\)

9: \(=\dfrac{x-2}{x-5}\cdot\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x-2\right)^2}=\dfrac{x+5}{x-2}\)

10: \(=1:\dfrac{a-1}{a}=\dfrac{a}{a-1}\)

12: \(=\dfrac{6\left(x+1\right)}{3x\left(x+1\right)}=\dfrac{2}{x}\)

13: \(\dfrac{3}{x+3}-\dfrac{x-6}{x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2x+6}{x\left(x+3\right)}=\dfrac{2}{x}\)

7 tháng 6 2019

a) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-3^3+x\left(4-x^2\right)=1\)

\(\Leftrightarrow x^3-27+4x-x^3=1\)

\(\Leftrightarrow-27+4x=1\)

\(\Leftrightarrow4x=1+27\)

\(\Leftrightarrow4x=28\)

\(\Leftrightarrow x=28:4\)

\(\Leftrightarrow x=7\)

Vậy phương trình có 1 nghiệm duy nhất là 7

7 tháng 6 2019

b) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)

Biến đổi vế trái của phương trình

\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=4\left(3x-1\right)\)

Phương trình thu được sau khi biến đổi

\(4\left(3x-1\right)=-2.5\)

\(\Leftrightarrow12x-4=-10\)

\(\Leftrightarrow12x=-6\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy nghiệm duy nhất của phương trình là \(\frac{-1}{2}\)

11 tháng 12 2017

a, (x-2)^2 - (x-3)(x+3)=6

x^2-4x+4-(x^2-9)=6

x^2-4x+4-x^2+9=6

(x^2-x^2)-4x+13=6

-4x=-7

x=1,75

b, 4(x-3)^2 - (2x-1)(2x+1)=10

4(x^2-6x+9)-(4x^2-1)=10

4x^2-24x+36-4x^2+1=10

-24x+37=10

x=9/8

c,(x-4)^2 - (x+2)(x-2)=6

x^2-8x+16-(x^2-4)=6

x^2-8x+16-x^2+4=6

-8x+20=6

x=7/4

d, 9(x+1)^2 - (3x-2)(3x+2)=10

9(x^2+2x+1)-(9x^2-4)=10

9x^2+18x+9-9x^2+4=10

18x+13=10

x=-1/6

1 tháng 7 2018

\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(-4x+13=6\)

\(-4x=6-13\)

\(-4x=-7\)

\(x=\frac{-7}{-4}\)

\(x=\frac{7}{4}\)

Vậy \(x=\frac{7}{4}\)

\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)

\(4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)

\(4x^2-24x+36-4x^2+1=10\)

\(-24x+37=10\)

\(x=\frac{9}{8}\)

Vậy \(x=\frac{9}{8}\)

\(c,\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)

\(x^2-8x+16-\left(x^2-4\right)=6\)

\(x^2-8x+16-x^2+4=6\)

\(-8x+20=6\)

\(x=\frac{7}{4}\)

Vậy \(x=\frac{7}{4}\)

\(d,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)

\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)

\(9x^2+18x+9-9x^2+4=10\)

\(18x+13=10\)

\(x=\frac{-1}{6}\)

Vậy \(x=\frac{-1}{6}\)