Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 1-2+3-4+5-6-.....+99-100
=(1-2)+(3-4)+(5-6)+...+(99-100) (50 cặp)
=(-1)+(-1)+(-1)+...+(-1) (50 số -1)
=(-1).50
=-50
2.1+3-5-7+9+11-.....-397-399
=(1+3-5-7)+(9+11-13-15)+....+(387+389-391-393)+395-397-399 (99 cặp)
=(-8)+(-8)+(-8)+...+(-8)+(-401)(có 99 có -8)
=(-8).99+(-401)
=(-792)+(-401)
=-1193
3. 1-2-3+4+5-6-7+...+96+97-98-99+100
=(1-2-3+4)+(5-6-7+8)+...+(93-94-95+96)+(97-98-99+100) (25 cặp)
=0+0+0+...+0
=0
4. A=2100-299-298-.....-22-2-1
2A=2101-2100-299-....-23-22-2
2A-A=A=2101-2100-2100+1
A=2101-2.2100+1
A=2101-2101+1
A=1
A=(2^1+2^2)+(2^3+2^4)+.....+(2^99+2^100)
A=(2+2^2)+2^2(2+2^2)+.....+2^98(2+2^2)
A=6+2^2.6+....+2^98.6
A=6+2^2.6+......+2^98.3.2
Vậy A chia hêt cho 3
\(A=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow A=2^{101}-2\)
\(B=3+3^2+3^3+...+3^{99}+3^{100}\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow2B=3^{101}-3\)
\(\Rightarrow B=\dfrac{3^{101}-3}{2}\)
2a=2+2^2+...+2^101
a=(2+...+2^101)-(1+...+2^100)
a=2^101-1
Tương tự 2b=3^100-3
b=3^100-3/2
\(A=2+2^2+2^3+....+2^{100}.\)
\(2A=2^2+2^3+...+2^{101}.\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+.....+2^{100}\right).\)
\(A=2^{101}-2\)
phần adễ rồi
b)B= 1+3-5-7+9-11-...-397-399
:
CÁCH 1: B=1+3-5-7+9-11-...-397-399
=1+3-5-7+9-11-...-397-399+401-401
=1+(3-5-7+9)-...-(395-397-399+401)-401
=1+0-0-...-0-401
=1-401=(-400)
2.[( 7 - 33: 32):22 + 99] - 100
= 2.[(7 - 3) : 4 + 99] - 100
= 2. [1 + 99] - 100
= 200 - 100
= 100
= 0