Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{15}-\dfrac{1}{35}-\dfrac{1}{63}-...-\dfrac{1}{9999}\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{9999}\right)\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{99.101}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{100}{101}\)
\(=\dfrac{1}{2}-\dfrac{50}{101}\)
\(=\dfrac{1}{202}.\)
a) CÓ: A = (1-1/42).(1-1/52).(1-1/62)......(1-1/2002)
=\(\frac{4^2-1^2}{4^2}\). \(\frac{5^2-1^2}{5^2}\). \(\frac{6^2-1^2}{6^2}\)....... \(\frac{200^2-1^2}{200^2}\)
Ta có công thức sau : a2-b2= a2 -ab+ab-b2
= a(a-b) + b(a-b)
= (a+b)(a-b)
ÁP DỤNG CÔNG THỨC TRÊN VÀO BÀI TOÁN TA ĐƯỢC :
A= \(\frac{3.5}{4^2}\). \(\frac{4.6}{5^2}\). \(\frac{5.7}{6^2}\)......\(\frac{199.201}{200^2}\)
= \(\frac{\left(3.4.5.....199\right)\left(5.6.7....201\right)}{\left(4.5.6......200\right)^2}\)
= \(\frac{\left(3.4.5.......199\right)\left(5.6.7.....200.201\right)}{\left(4.5.6.....199.200\right)\left(4.5.6......200\right)}\)
= \(\frac{3.201}{200.4}\)
= \(\frac{603}{800}\)
b)Từ đề bài ta suy ra : B=\(\frac{1.3}{5.7}\).\(\frac{3.5}{7.9}\). \(\frac{5.7}{9.11}\)...... \(\frac{99.101}{103.105}\)
= \(\frac{1.3^2.5^2.7^2......99^2.101}{5.7^2.9^2.11^2....99^2.101^2.103^2.105}\)
=\(\frac{3^2.5}{101.103^2.105}\)
=\(\frac{3}{7500563}\)
\(A=\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(A=-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(\Rightarrow2A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99\cdot101}\right)\)
\(2A=-\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{99}-\frac{2}{101}\right)\)
\(2A=-\left(2-\frac{2}{101}\right)\)
\(2A=-\frac{200}{101}\)
\(\Rightarrow A=-\frac{100}{101}\)
Đặt biểu thức trên là A, ta có:
\(A=\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(\Rightarrow A=-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(\Rightarrow A=-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
\(\Rightarrow2A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(\Rightarrow2A=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow2A=-\left(1-\frac{1}{101}\right)\)
\(\Rightarrow2A=-\frac{100}{101}\)
\(\Rightarrow A=-\frac{100}{101}\div2=-\frac{50}{101}\)
\(S=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\)
\(=\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{303}\)
\(=\dfrac{49}{303}\)
Vậy \(S=\dfrac{49}{303}\)
#\(Toru\)
1/3 + 1/15 + 1/35 + 1/63
= 1/1.3 + 1/3.5 + 1/5.7 + 1/7.9
= 1/2 ( 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9 )
= 1/2 ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 )
= 1/2 ( 1 - 1/9 )
= 1/2 . 8/9
= 4/9
\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)
\(\Rightarrow3x-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)=0\)
\(\Rightarrow3x-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)=0\)
\(\Rightarrow3x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)
\(\Rightarrow3x-\left(1-\frac{1}{99}\right)=0\)
\(\Rightarrow3x-\frac{98}{99}=0\)
\(\Rightarrow3x=0+\frac{98}{99}\)
\(\Rightarrow3x=\frac{98}{99}\)
\(\Rightarrow x=\frac{98}{99}:3\)
\(\Rightarrow x=\frac{98}{297}\)
\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)
\(2\left(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}\right)=2.0\)
\(6x-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}-\frac{2}{99}=0\)
\(6x-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=0\)
\(6x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)
\(6x-\left(1-\frac{1}{11}\right)=0\)
\(6x-\frac{10}{11}=0\)
\(6x=\frac{10}{11}\)
\(x=\frac{5}{33}\)
a)\(\frac{1}{2}-2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+.....+\frac{2}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{50}\right)\)
=\(\frac{1}{50}\)
\(1)a)\frac{1}{2}-2\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{24.25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{24}-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\frac{24}{25}=\frac{-23}{50}\)
\(\)
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`