K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

lũ ngu ngốc ko pít làm 

10 tháng 2 2016

e mới lớp 7 thôi akk

1 tháng 12 2021

\(a,\) Gọi đt cần tìm là \(y=ax+b\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)

\(b,\) Gọi đt cần tìm là \(y=ax+b\)

\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)

\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)

Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)

\(\Leftrightarrow P\notinđths\)

Vậy 3 điểm này ko thẳng hàng

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

Làm ơn p nào tốt giúp mk giải đề này vs , mk đang cần gấp trong ngày mai (10-3) . à mà nhớ viết cách giải lên nha . mk sẽ hậu tạ .mk cảm ơn trước nha . Bài 1: Hãy điền số thích hợp vào chỗ chấm.Câu 1.1:Nghiệm lớn nhất của phương trình x4 - 29x2 + 100 = 0 là x = ............ Câu 1.3:Một hình trụ có diện tích xung quanh là 80π cm2 và thể tích là 160π cm2.Bán kính đáy của hình trụ này là R =...
Đọc tiếp

Làm ơn p nào tốt giúp mk giải đề này vs , mk đang cần gấp trong ngày mai (10-3) . à mà nhớ viết cách giải lên nha . mk sẽ hậu tạ .mk cảm ơn trước nha . 

Bài 1: Hãy điền số thích hợp vào chỗ chấm.

Câu 1.1:
Nghiệm lớn nhất của phương trình x- 29x+ 100 = 0 là x = ............

 

Câu 1.3:

Một hình trụ có diện tích xung quanh là 80π cm2 và thể tích là 160π cm2.
Bán kính đáy của hình trụ này là R = ........... cm.

 

Câu 1.4:

Khi phương trình x2 - 3x + m = 0 có một nghiệm là x = 1,25 thì nghiệm còn lại của phương trình là x = ...............

 

Câu 1.8:

Hai tổ cùng làm chung một công việc trong 12 giờ thì xong. Nhưng hai tổ cùng làm trong 4 giờ thì tổ 1 đi làm việc khác, tổ 2 làm nốt trong 10 giờ mới xong việc. Nếu làm riêng thì tổ 2 mất ....... giờ sẽ xong việc.

Câu 1.9

Nghiệm nguyên của phương trình: x+ 5x- 12x+ 5x + 1 = 0 là x = ............

 

Câu 1.10:

Nghiệm âm của phương trình (x+ 3x + 2)(x+ 7x + 12) = 120 là x = ..........

 

Bài 2: Đi tìm kho báu

 

Câu 2.2:

Nghiệm nguyên của phương trình: 2x- 3x- 7x+ 12x = 4 là ...........

Nhập kết quả dưới dạng số thập phân gọn nhất.

Câu 2.3:

Cho tam giác ABC vuông cân tại A. Trên nửa mặt phẳng bờ BC không chứa điểm A vẽ tam giác cân BCD có góc CBD = 90o. Biết độ dài cạnh AC = 3√5cm.
Độ dài đoạn AD = ........... cm.

Câu 2.4:

Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = mx + m - 1. 
Giá trị m nguyên để (d) tạo với 2 trục tọa độ tam giác có diện tích 2 (đvdt) là ...........

Câu 2.5:

Cho a, b, c > 0 thỏa mãn a + b + c = 1.
Giá trị nhỏ nhất của biểu thức A = bc/a + ca/b + ab/c bằng ...........

Bài 3: Đỉnh núi trí tuệ

Câu 3.1:
Cho đường tròn (O; 13cm). Biết khoảng cách từ tâm O đến dây PQ bằng 5cm. 
Độ dài dây PQ = ...........cm.

 

Câu 3.2:

Cho hàm số y = 1/2 .x2 có đồ thi là (P).
Trên (P) lấy hai điểm A, B có hoành độ lần lượt là -1; 2.
Phương trình đường thẳng AB có tung độ gốc là ............

Câu 3.3:

Phương trình x2 - 2(m + 2)x + 2m - 1 = 0 có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √34. 
Khi đó m = ...........

Câu 3.4:

Một đa giác có số đường chéo nhiều hơn số cạnh là 12. Số cạnh của đa giác là ..........

 

Câu 3.5:

Cho parabol (P): y = ax2 và đường thẳng (d) có hệ số góc bằng 2. Biết (d) và (P) có một điểm chung duy nhất là A có hoành độ bằng 2. Khi đó tung độ của điểm A là ............

 

Câu 3.6:

Cho phương trình x2 - 5x - 1 = 0 có các nghiệm x1, x2. Biểu thức B = (x1- 5x12 + 2)(x2- 5x22 + 2) có giá trị là ...........

Câu 3.7:

Cho a, b > 0 và 3a + 5b = 12.
Giá trị lớn nhất của biểu thức P = ab là ...........

Nhập kết quả dưới dạng phân số tối giản.

 

6
9 tháng 3 2016

Nếu quá dài ko trả lời hết thì các p cki cần làm nhanh giúp mk câu : 1.8 ; 2.2 đến 2.5 và 3.2 đến 3.7 thôi cũng dk . mk thật lòng biết ơn . 

10 tháng 3 2016

Câu 1.1:
Nghiệm lớn nhất của phương trình x- 29x+ 100 = 0 là x = ...........phương trình này vô nghiệm nhé

Câu 1.3:

Một hình trụ có diện tích xung quanh là 80π cm2 và thể tích là 160π cm2.
Bán kính đáy của hình trụ này là R = .......4.... cm.

Câu 1.4:

Khi phương trình x2 - 3x + m = 0 có một nghiệm là x = 1,25 thì nghiệm còn lại của phương trình là x = ........1,75.......

Câu 1.8:

Hai tổ cùng làm chung một công việc trong 12 giờ thì xong. Nhưng hai tổ cùng làm trong 4 giờ thì tổ 1 đi làm việc khác, tổ 2 làm nốt trong 10 giờ mới xong việc. Nếu làm riêng thì tổ 2 mất .....60.. giờ sẽ xong việc.

Câu 1.9

Nghiệm nguyên của phương trình: x+ 5x- 12x+ 5x + 1 = 0 là x = .....1.......

Câu 1.10:

Nghiệm âm của phương trình (x+ 3x + 2)(x+ 7x + 12) = 120 là x = ...1.......

Bài 2: Đi tìm kho báu

Câu 2.2:

Nghiệm nguyên của phương trình: 2x- 3x- 7x+ 12x = 4 là .....1......

Câu 2.3:

Cho tam giác ABC vuông cân tại A. Trên nửa mặt phẳng bờ BC không chứa điểm A vẽ tam giác cân BCD có góc CBD = 90o. Biết độ dài cạnh AC = 3√5cm.
Độ dài đoạn AD = .....Căn 6...... cm.

Câu 2.4:

Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = mx + m - 1. 
Giá trị m nguyên để (d) tạo với 2 trục tọa độ tam giác có diện tích 2 (đvdt) là ....1.......

Câu 2.5:

Cho a, b, c > 0 thỏa mãn a + b + c = 1.
Giá trị nhỏ nhất của biểu thức A = bc/a + ca/b + ab/c bằng ......3.....

Bài 3: Đỉnh núi trí tuệ

Câu 3.1:
Cho đường tròn (O; 13cm). Biết khoảng cách từ tâm O đến dây PQ bằng 5cm. 
Độ dài dây PQ = .....24......cm.

Câu 3.2:

Cho hàm số y = 1/2 .x2 có đồ thi là (P).
Trên (P) lấy hai điểm A, B có hoành độ lần lượt là -1; 2.
Phương trình đường thẳng AB có tung độ gốc là .......2.....

Câu 3.3:

Phương trình x2 - 2(m + 2)x + 2m - 1 = 0 có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √34. 
Khi đó m = ...Chịu........

Câu 3.4:

Một đa giác có số đường chéo nhiều hơn số cạnh là 12. Số cạnh của đa giác là ...8.......

Câu 3.5:

Cho parabol (P): y = ax2 và đường thẳng (d) có hệ số góc bằng 2. Biết (d) và (P) có một điểm chung duy nhất là A có hoành độ bằng 2. Khi đó tung độ của điểm A là ...Chịu.........

Câu 3.6:

Cho phương trình x2 - 5x - 1 = 0 có các nghiệm x1, x2. Biểu thức B = (x1- 5x12 + 2)(x2- 5x22 + 2) có giá trị là ......Chịu.....

Câu 3.7:

Cho a, b > 0 và 3a + 5b = 12.
Giá trị lớn nhất của biểu thức P = ab là ...Chịu nốt........

Nhập kết quả dưới dạng phân số tối giản.

Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x³ - 3x.Câu 2 (1,0 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x + 4/x trên đoạn [1;3].Câu 3 (1,0 điểm).a) Cho số phức z thỏa mãn (1 - i)z -1 + 5i = 0. Tìm phần thực và phần ảo của z.b) Giải phương trình log2(x² + x + 2) = 3.Câu 4 (1,0 điểm) 1 Tính tích phân I =∫(x - 3)exdx 0 Câu 5 (1,0...
Đọc tiếp

Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x³ - 3x.

Câu 2 (1,0 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x + 4/x trên đoạn [1;3].

Câu 3 (1,0 điểm).

a) Cho số phức z thỏa mãn (1 - i)z -1 + 5i = 0. Tìm phần thực và phần ảo của z.

b) Giải phương trình log2(x² + x + 2) = 3.

Câu 4 (1,0 điểm)

 1 
Tính tích phân I =(x - 3)exdx
 0 

Câu 5 (1,0 điểm). Trong không gian với hệ trục Oxyz, cho các điểm A (1; -2; 1), B(2; 1; 3) và mặt phẳng (P) x - y + 2z - 3 = 0. Viết phương trình đường thẳng AB và tìm tọa độ giao điểm của đường thẳng AB với mặt phẳng (P).

Câu 6 (1,0 điểm).

a, Tính giá trị của biểu thức P = (1 - 3cos2α)(2 + 3cos2α), biết sinα = 2/3.

b, Trong đợt phòng chống dịch MERS-CoV, Sở y tế thành phố đã chọn ngẫu nhiên 3 đội phòng chống dịch cơ động trong số 5 đội của Trung tâm y tế dự phòng thành phố và 20 đội của Trung tâm y tế cơ sở để kiểm tra công tác chuẩn bị. Tính xác suất để có ít nhất 2 đội của các Trung tâm y tế cơ sở được chọn. 

Câu 7 (1,0 điểm). Cho hình chóp S.ABCD có đáy ACBD là hình vuông cạnh a, SA vuông góc với mặt phẳmg (ABCD), góc giữa đường thẳng SC và mặt phẳng (ACBD) bằng 45o. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB, AC.

Câu 8 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu của vuông góc C trên đường thẳng AD. Giả sử H (-5;-5), K (9;-3) và trung điểm của cạnh AC thuộc đường thẳng: x - y + 10 = 0. Tìm tọa độ điểm A.

0
Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

Câu 16. Tìm giá trị lớn nhất của biểu thức:

Câu 17. So sánh các số thực sau (không dùng máy tính):

Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3

Câu 19. Giải phương trình: .

Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.

Câu 21. Cho .

Hãy so sánh S và .

Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:

Câu 24. Chứng minh rằng các số sau là số vô tỉ:

Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?

Câu 26. Cho các số x và y khác 0. Chứng minh rằng:

 

Câu 27. Cho các số x, y, z dương. Chứng minh rằng: 

 

Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 34. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 35. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

 

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

Câu 42.

a) Chứng minh rằng: | A + B | ≤ | A | + | B |. Dấu “ = ” xảy ra khi nào?

b) Tìm giá trị nhỏ nhất của biểu thức sau: .

c) Giải phương trình: 

Câu 43. Giải phương trình: .

Câu 44. Tìm các giá trị của x để các biểu thức sau có nghĩa:

 

4
27 tháng 2 2017

sao dài thế @@ chộp bài nào làm bài nấy ha

Câu 1:

Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0

\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)

=> a chia hết cho 7 => a=7k với k thuộc Z

Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)

Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu

=>\(\sqrt{7}\) là số vô tỉ (đpcm)

27 tháng 2 2017

Ta có: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\) (1)

Mặt khác: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\) (2)

Từ (1) và (2) => đpcm